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Abstract

Analysis of the differential cross sections for the reaction pp — ppK K~

in view of the Kt K~ interaction

Measurements of the pp — ppK ™K~ reaction, performed with the experiment COSY-11 at the
Cooler Synchrotron COSY, show a significant difference between the obtained excitation function
and theoretical expectations including pp—FSI . The discrepancy may be assigned to the influence
of KTK~ or K™ p interaction. This interaction should manifest itself in the distributions of the
differential cross section. This thesis presents an analysis of event distributions as a function of the
invariant masses of two particle subsystems. In particular in the analysis two generalizations of the
Dalitz plot proposed by Goldhaber and Nyborg are used. The present Investigations are based on
the experimental data determined by the COSY-11 collaboration from two measurements at excess
energies of Q = 10 MeV and 28 MeV. The experimental distributions are compared to results of
Monte Carlo simulations generated with various parameters of the K™K~ and K~ p interaction.
The values of the K™K~ scattering length, extracted from two data sets for Q@ = 10 MeV and
28 MeV amount to:

ag+r- = (11 & 8) + (0 & 6) fm for Q = 10 MeV
and
i = (0.2 £ 0.2) + i(0.0 + 0.5) fm for Q = 28 MeV |

Due to the low statistics, the extracted values have large uncertainties and are consistent with very

low values of the real and imaginary part of the scattering length.
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1. Introduction

A primary goal of hadronic physics is to understand the mechanism of production and de-
cays of mesons and baryons and their structure in terms of quarks and gluons. However the
non-perturbative character of the Quantum Chromo Dynamics in the regime of low momentum
transfer makes calculations impossible in terms of quark and gluon degrees of freedom. One of the
most successful theory of strong forces at low energies is the lattice QCD, which is, however, not
yet in the position to make quantitative statements about light scalar states (J? = 01). There-
fore in this case one has to use other QCD based approaches, for example the constituent quark
model. This approach treats the lightest scalar resonances ag(980) and f,(980) as a conventional
qq states [1]. However, also this model cannot describe fully the properies of these particles and
therefore they are considered as possible candidates for exotic four quark states (qqqq) [2], quark-
less gluonic hadrons [3] or KK molecules [4-6]. Another candidate for a kaon bound state is the
excited hyperon A(1405), which is considered as a KN molecule [7]. For the formation of both
KK or KN molecules a crucial quantity is the strength of the kaon-antikaon or kaon-nucleon in-
teraction, respectively. These interactions appear to be very important also with respect to many
other physics phenomena, like for example a modification of the neutron star properties due to
possible kaon condensation [8,9]. An Neutron star consists mainly of neutrons, protons and lep-
tons. However inside the core of the star the high nuclear density decreases the mas of K~ allowing
creation in processes like e.g. e~ — K1, , and n — pK~. Since kaons are bosons, they can go
into a Bose-Einstein condensate. Such phase transition causes changes in neutron star parameters
or may even trigger off its collapse into a black hole [10].

In order to learn more about the above mentioned intriguing physical issues it is mandatory to
conduct investigations of the KK and KN interaction. Because kaon targets are still unavailable,
one of the realistic ways to study KK interaction is the near threshold kaon pair production, for
example in multi particle exit channels like pp — ppK+TK~. Measurements of the total cross
section of the aforementioned reaction were performed at the cooler synchrotron COSY near the
kinematical threshold [11-13] by the COSY-11 collaboration [14], and for higher energies by the
ANKE collaboration [15]. Such an experiment was conducted also by the DISTO collaboration [16]
at Q = 114 MeV at the SATURN accelerator. The results indicate that the near threshold total
cross section data points lie significantly above theoretical expectations, which neglet the interac-
tion of KK~ pair.

Encouraged by this observation, in order to deepen our knowledge about the low energy dynam-
ics of the ppK ™K~ system, we extended the analysis of the pp — ppK ™K~ reaction into the
differential cross sections. This thesis concerns the investigation of event distributions for the
above mentioned reaction measured by means of the COSY-11 detector setup at excess energies of
Q = 10 MeV and 28 MeV [12]. The analysis is based on generalizations of the Dalitz plot for four
particles proposed by Goldhaber [17,18] and Nyborg [19].

The next chapter of this thesis includes general information about kaon pair production in proton-
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8 Chapter 1: Introduction

proton collisions, and presents the main components of the COSY-11 apparatus [14,20,21]. It
contains also a brief description of measurements of the pp — ppK K~ reaction performed with
this detection setup. In the third chapter we describe general properties of the Dalitz plot which
is a convenient tool in the investigation of the final state interaction for three particles [22]. Sub-
sequently the next sections present two theoretical approaches to generalize the Dalitz plot for the
case of the four particles in the final state.

The studies of the K™K~ final state interaction are described in Chapter 4. It presents the dif-
ferential cross sections obtained from measurements at both excess energies and shortly describes
the procedure that we applied to derive them from raw experimental data. The remaining part of
the chapter is devoted to the determination of the scattering length of the K+ K~ interaction. We
present the main steps of the analysis and the obtained results.

The last chapter comprises summary and perspectives of further studies of the K™K~ interac-

tion.



2. Kaon pair production with the COSY-11 experiment

2.1 Near threshold kaon pair production in proton-proton collisions

There are several mechanisms that can lead to the production of kaon—antikaon pairs in nu-

cleon—nucleon collisions. These can be divided mainly into three general classes [15]:

a) direct production without any intermediate states:
pp — ppK K™,

b) the production via a meson, for example ¢, or at threshold - a¢(980)/fo(980), which then decays
into KK:

pp — ppd — ppKTK~ |
pp — ppao(980)/ fo(980) — ppK K~

¢) the associated production of KY*, where the K is created through the decay of the excited
hyperon Y*:

pp — KTpY* — ppK T K~

There are several excited hyperons that could contribute to such a process. Of particular interest
for low energy production are the A(1405) and >(1385).

It is worth mentioning, that the mechanism of the near threshold pp — ppK ™K~ reaction is still
unknown. It is therefore an interesting and still open question whether it is a direct reaction, or
whether it should be viewed as a two-step process through a mesonic state like ag/ fo or an excited
hyperon A(1405)/%(1385).

2.2 COSY-11 detection setup

Studies of the near threshold pp — ppK T K~ reaction have been made possible due to the low
emittance and small momentum spread proton beams available at the storage ring facilities and in
particular at the cooler synchrotron COSY [23,24] placed in Jilich in Germany. COSY provides
polarized proton and deuteron beams with momenta up to p = 3.65 GeV/c, corresponding to
beam energies of Tproton = 2.83 and Tgeuteron = 2.23 GeV, respectively. The beam can be
cooled with an electron cooling system for low energies, or a stochastic cooling system for high
energies. One of the detector systems operating over more then eleven years at the COSY-ring
was COSY-11.
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cluster target

drift chambers =—
S

pp -> ppK K™~

S3

Figure 2.1: Schematic view of the COSY-11 detector [14, 20] with an exemplary event of the

pp — ppKTK ™ reaction channel. For the description see text.

The COSY-11 facility was designed for close-to-threshold reaction studies where the relative mo-
menta between the reaction particles are very small and all particles are focussed into a narrow
forward cone resulting in a high detection efficiency achievable by still using rather small detection
systems [25]. There is a special interest in the near threshold region because the final state inter-
action between the outgoing reaction products is best visible and the contributing partial waves
are strongly limited mostly to pure s-waves which simplifies the theoretical description. Due to
the very strong energy dependence at threshold it is important to have a precise knowledge of the
beam momentum and a very good momentum resolution of the beam particles [26]. COSY-11 is
an internal magnetic spectrometer using a COSY machine dipole to separate the charged reaction
products from the circulating beam [14]. The detection system was already described in many
publications [11-14,25,27,28], therefore we will only briefly review its main components shown in
Fig. 2] The description is based mainly on the references [25,27,28].

The COSY-11 hydrogen cluster target [29] was installed in front of one of the regular COSY dipole
magnets. An internal target should be so thin that it does not affect the beam significantly, on
the other hand it should be thick enough to reach a reasonable number of the required reactions.
These requirements can be fulfilled with a cluster target where cooled gas (e.g. hydrogen) is pressed
through a so-called 'Laval’-nozzle [14,29]. Inside the nozzle the gas is cooled by the expansion and
molecules freeze together forming clusters. Using skimmers free gas molecules are peeled off the
cluster beam. So the rest gas pressure in the target chamber is very low. After traversing the target
chamber the clusters hit the beam dump, evaporate, and are pumped away [29]. The COSY-11
cluster target being a beam of Ho molecules grouped to clusters of up to 10 atoms crosses perpen-

dicularly the COSY beam with intensities of about 5 - 10!° protons. The very thin target makes
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the probability of secondary scattering negligible and hence allows the precise determination of
the ejectile momenta [28]. Moreover the energy loss of the COSY beam circulating through such a
target could be compensated by the stochastic cooling system of COSY which guarantees a precise
beam momentum over the whole measurement cycle.

The main component of the COSY-11 detection system are two drift chambers (see Fig. [2.2) sets
with 6 and 8 layers of vertical and inclined wires [30]. The drift chambers are used to determine
the track of the charged particles. For this purpose thin wires are fixed in a volume filled with a
special gas (in case of COSY-11 a mixture of Argon and Ethan) in a way, that the wires form cells
as it is depicted in Fig. [14].

Figure 2.2: Front view of one of the COSY-11 drift chambers stack.

Inside these cells a traversing charged particle ionizes the gas. Due to the electrical potentials
applied to the wires the electrons drift to the sense wire and the connected electronics measures
the time when the signal appears. The difference between this time and the time when the particle
traversed the cell (measured by scintillation detectors) is used to reconstruct the impact point of

the particle in the chambers midplane.

1

|2k

[ " 40 mm 1

« field wire - sense wire

Figure 2.3: Schematic view of a drift chambers cell.

The achieved position resolution of the COSY-11 drift chambers amount to about 200 um [25].

To select candidates for desired events already on the trigger level, various scintillation detectors
were installed [25]. Scintillation counters detect charged particles by the light which is produced
when a particle travels through the scintillating material. The light is collected by light guides and
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converted into an electronic signal by photomultipliers [13]. Behind the COSY-11 drift chambers a
hodoscope named S1 was mounted (Fig.[24). S1 consists of 16 thin scintillator bars with dimensions

of 45 cm x 10 cm X 0.4 cm, each readout on both sides.

Figure 2.4: Front view of the S1 hodoscope.

This scintilator hodoscope measures the number of produced charged particles and serves as a
start detector for a time-of-flight measurement. Nine meters apart from S1 a scintilator wall S3,
read out by a matrix of 217 photomultipliers, was installed (see Fig. 2.3). It serves as a position

sensitive detector and as a stop counter for the time-of-flight measurement.

Figure 2.5: The COSY-11 large scintillator wall called S3 or "AMADEUS”.

Because in the dipole gap there was no space for tracking detectors for negatively charged particles,
only a silicon pad detector combined with a scintillator was installed (see Fig. [Z6). It determines
the position of a charged particle within a binning of a few millimeters and drastically reduces the

background in the K™K~ production studies [25].
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Figure 2.6: One module of the COSY-11 silicon pad detector consisting of 144 independent detection

units arranged in three layers.

Other detector components are used for special purposes like a system of scintillator and propor-
tional wire chambers in forward direction above and below the vacuum chamber to measure the lu-
minosity and to determine the polarisation during measurements with polarized beam [25]. A more

detailed description of the detector components can be found for example in references [14,20,21,25].

2.3 Measurements of the pp — pp KT K~ reaction at COSY-11

The data used in our analysis, which will be presented in Chapter 4, were analysed and
published in view of the total cross section [11]. Hereafter we will briefly describe the measurements
method and for more details the interested reader is refered to articles [25,28]. The below presented
description is based mostly on references [14,28].

If at the intersection point of the cluster target and the COSY beam a collision of protons leads
to the production of a K™K~ meson pair, then the reaction products — having smaller momenta
than the circulating beam — are directed by the magnetic field towards the COSY-11 detection
system and leave the vacuum chamber through the thin exit foils [14]. Tracks of the positively
charged particles, registered by the drift chambers, are traced back through the magnetic field to
the nominal interaction point leading to a momentum determination. A simultaneous measurement
of the velocity, performed by means of scintillation detectors S1 and S3, permits to identify the
registered particle and to determine its four momentum vector. Since at threshold the center-
of-mass momenta of the produced particles are small compared to the beam momentum, in the
laboratory frame all ejectiles are moving with almost the same velocity. This means that the
laboratory proton momenta are almost two times larger then the momenta of kaons. Therefore, in
the dipole magnetic field protons have a much larger bending radius than kaons. As a consequence,
in case of the near threshold production, protons and kaons are registered in separate parts of the
drift chambers as shown schematically in Fig. 211 [28]. Fig. 27 shows the squared invariant mass
of two simultaneously detected particles in the near beampipe part of the drift chamber. A clear

separation is observed into groups of events with two protons and proton and pion [28]. This
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Events

Figure 2.7: Squared invariant masses of two positively charged particles measured in coincidence at the

right half of the drift chambers. The Figure is addapted from reference [12].

spectrum allows to select events with two registered protons. The additional requirement that
the mass of the third particle, registered at the far beampipe side of the chamber, corresponds
to the mass of the kaon, makes possible to identify events of a pp — ppK+TX ™~ reaction [28].
Knowing both the four momenta of positively charged ejectiles and the proton beam momentum
one can calculate the mass of the unobserved system X~ and its four momentum. This method
of particle identification is called the missing mass technique [31]. Fig. (upper panel) presents
an example of the missing mass spectrum with respect to the identified ppK T subsystem. In case
of the pp — ppK ™K~ reaction this should correspond to the mass of the K~ meson, and indeed a
pronounced signal can be clearly seen. The additional broad structure seen in the Figure is partly
due to the pp — pprt X~ reaction, where the 7" was misidentified as a K+ meson and partly due
to the K™ meson production associated with the hyperons A(1405) or $:(1385), e.g. via the reaction
pp — pKTA(1405) — pK ™70 — pKTAyn® — ppKtr— 7Y [11-13,28]. In the latter case the
missing mass of the ppK+ system corresponds to the invariant mass of the 7t7%y system and
hence can acquire values from twice the pion mass up to the kinematical limit. The background,
however, can be completely reduced by demanding a signal in the silicon strip detectors at the
position where the K~ meson originating from the pp — ppK T K~ reaction is expected [28] (the
spectrum in the lower panel of Fig. 2.8)). This clear identification allows to select events originating
from the pp — ppK T K~ reaction and to determine the total and differential cross section.

The results of all measurements of the pp — ppK T K~ reaction performed with COSY-11 will be

presented in the next section.

2.4 Excitation function for the pp — pp KT K~ reaction at threshold

The measurements of the pp — ppK ™K~ reaction were performed by the COSY-11 group
several times in the period from 1995 to 2005 [11-13]. The results are presented together with
data obtained by other collaborations in Fig.
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Figure 2.8: (Upper panel) Exemplary missing mass spectrum determined for the pp — ppK "X~ re-
action at an excess energy of Q = 17 MeV [11]; (Lower panel) The same spectrum with additional

requirement of the signal in the dipol detector as it is described in the text. The Figure is addapted from

refference [11].
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Figure 2.9: Total cross section as a function of the excess energy Q for the reaction pp — ppKTK ™.
Open and filled circles represent the DISTO [16](open circle) and ANKE [15] measurements respectively.
The four points nearest threshold are the results from COSY-11 measurements [11-13]. The curves are

described in the text. The Figure is adapted from ref. [15].

In the Figure one can see also three curves representing the theoretical expectations. The dashed
curve represents the energy dependence from four-body phase space, when we assume that there is
no interaction between particles in the final state. This result differs from the experimental data
by two orders of magnitude at ) = 10 MeV and by a factor of about five at Q = 28 MeV. Hence, it
is obvious, that the final state interactions effects in the pp K™K~ system cannot be neglected [32].
Inclusion of the pp-FSI( dashed-dotted line in Fig.[20) by folding its parameterization known from
the three body final state with the four body phase space is clearly closer to the experimental results

but does not fully account for the difference [12]. The enhancement may be due to the influence
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of K™K~ or Kp interaction which was neglected in the calculations. Indeed, the inclusion of the
K~ p-FSI (solid line) reproduces the experimental data for the exess energies down to Q = 28 MeV.
This model neglects the K p interaction, since it is repulsive and rather weak [28,33], and hence
it can be interpreted as an extra attraction in the K~ p system [15]. However, the data very
near threshold still remain underestimated, which indicates that in this region the influence of the
KT K~ interaction may be significant and cannot be neglected.

The interaction may manifest itself even stronger in the distributions of the differential cross
sections [26]. A significant effect observed for the excitation function for the pp — ppKTK~
reaction encouraged us to carry out the analysis in spite of the fact that the available statistics
is quite low. The investigations of the K™K~ interaction described in this thesis is based on
experimental data obtained from two COSY-11 measurements at excess energies of () = 10 MeV
(27 events) and 28 MeV (30 events) [12].



3. Dalitz plot and its generalization

3.1 The Dalitz plot as a tool in particle physics

In many investigations of elementary particle reactions the distributions of energies and mo-
menta of particles in the final state are measured. The measured distributions are then compared
with the theoretical expectations in order to extract parameters expressing final state interaction
between particles [19]. For three particles in the final state the process of analysing data by plot-
ting them in the space of two internal parameters is well known. It was originated by Dalitz in
a nonrelativistic application. In the original article [34] Dalitz let the distances to the sides of an
equilateral triangle be the energies of the three particles in the centre-of-mass frame. The sum of
distances from a point within the triangle to its sides is constant and equal to the height, which rep-
resents the total energy of the system (Fig. B.I)). In the nonrelativistic approximation for particles
with equal masses the physical allowed region on the Dalitz plot is bounded by a circle inscribed
in the triangle due to momentum conservation (Fig. B [35]. Therefore, the interior points fulfil
four-momentum conservation and represent energy partitions. The relativistic extension of Dalitz’s

analysis was given by Fabri [36].

B c

Figure 3.1: Exemplary event in the Dalitz plot representation. () = 71 + 75>+ 713 denotes the total kinetic

energy of the three particle system.

The interaction between particles depends on their relative momenta, thus for investigations of
final state interactions more convenient variables then energies are the squared invariant masses of

the two-body subsystems [22]. The squared invariant mass ij of particles ¢ and j is defined as:
2 S 2
M} = (Ei+ E;)" — (9 + 1)) (3.1)

where E;, E;, p;,p; denote the energies and momenta. In a geometrical representation the Dalitz

plot is a plane in space of three squared invariant masses - (M%,, M3;, M%), which is orthogonal

17
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Figure 3.2: Monte Carlo Dalitz plot distribution for the pp — ppn reaction at QQ = 28 MeV for the
homogeneously populated phase space (left picture), and its modification by proton-proton final state
interaction (right picture). The areas of the squares are proportional to the number of entries and are

shown in a linear scale.

to the space diagonal [22]. From the three invariant masses only two are independent due to the
relation [22]:

M3Z, + M+ M3, = s +m3 +m3 +m3 (3.2)
where s denotes the square of the total energy of the system and m; is a mass of i-th particle.
Thus a projection of the physical region on any of the (M7, + M3,) planes still comprises the whole
accessible information about the three particle system. Such two dimensional event distributions
are bounded by well defined smooth closed curves and are lorentz invariant. For example the

boundary of the projection on the (M%,, M3;) plane is given by a following equation [19]:
G(MEQ,Msg,m%,mg,\/E,mg) =0, (3.3)
where G is defined as:
G (z,y,z,u,v,w) = x2y + xy2 + 22u 4 zu® 4+ v*w + vw? 4+ zzw + zuv + YzU + yuw

—zy(z+ut+vt+w) —zulz+y+v+w) —vw@+y+z+u) . (3.4)
The Dalitz plot representation allows also for a simple interpretation of the kinematically available
phase space volume as an area of the plot [27]:
) (vs—m3)? M35 (M)
T P N

(mi+mz)? M2Z,min(M3,)

™ dM
= [ 0k s m A md ) 6.5)
(m1+ms)?

where A is the kinematical triangle function defined as [37]:

Mz, y, 2) = 2% +y* + 2% — 22y — 2yz — 2z, (3.6)
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In case of no dynamics and the absence of any final state interaction between particles the occupa-
tion of the Dalitz plot would be fully homogeneous because the creation in any phase space interval
would be equally probable [22,27]. Thus, final state interaction should show up as a modification of
the event density on the Dalitz plot. Such effect was observed experimentally eg. by the COSY-11
collaboration for the pp — ppn reaction [38].

In order to illustrate the effect in Fig. we show an example of how the uniformly populated
phase space (left plot) is modified by the S-wave proton-proton final state interaction (right plot).
It is clearly seen, that the interaction increases significantly the event density in the region where
the relative momenta of the protons are small.

Thus, such event distributions are very convenient in analysis of the final state interaction and

they are widely applied in practice.

3.2 Generalization of the Dalitz plot for the case of four particles

One can ask a question whether the analysis described in the last section can be made for
four or more particles in the final state. The answer is affirmative, accorging to Nyborg the Dalitz
plot can be generalized, under some assumptions, for any number of particles [39]. In this thesis
we present only three from many possible generalizations. In particular we will introduce gen-
eralizations of the Dalitz plot for four particles made by Chodrow [40], Goldhaber [17,18] and
Nyborg [19]. Further on the Goldhaber and Nyborg approaches will be used in our analysis of the

K™K~ final state interaction.

3.2.1 Chodrow plot

Consider a reaction like a +b — 14 2 + 3 + 4 yelding four particles with mases m; and total
energy /s in centre-of-mass frame. The probability, that the momentum of the i*" particle will be

in a range d>p; is given by:

4 4
1
d2P = B dBooddpd®py ———— 53 716 E. — M2 .
p1d”p2d”ps3 p416E1E2E3E4 ;P; Z i —s | |M] (3.7)

j=1

where E; = \/p? + m? denotes an energy of the i" particle (¢ = 1) and M denotes the invariant
matrix element for the process. In his work Chodrow assumed, that M depends only on energies
of the particles in the final state [40]. Under this assumption one can integrate the distribution
expressed in eq. (B7) over delta functions and over spatial orientations of the entire four body

system. The resulting density of events in (E1, Eq, E'3) space is then given by [40]:
d*P = dE,dEydEs |M|* min (|71, |pa]) - (3.8)

It is therefore possible to analyse resonances by plotting the event distribution in an E; Es-plane.
However, the analysis is not easy due to the factor min (|p1], [p2|) [40]. This difficulty can be
avoided if in the final state particles 1 and 2 are identical, like for example in the case of the

ppK+T K~ system. In such case the function min (|p1], |p2|) becomes symetric and the analysis can
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Figure 3.3: Chodrow plot for the pp — ppK " K~ reaction simulated at Q = 28 MeV for the homogeneously
populated phase space (left plot), and for the case when proton-proton final state interaction is additionally

taken into account (right plot).

be confined to the region of the Ej FEs-plane defined by condition E; < F3. Consequently from
eq. (B:8)) one obtains [40]:

d*P = 321 |M|* \/ E? — m? dE\dE2dEs | (3.9)

or

d*P = 321 |M|? dFydEydEs (3.10)

where dF} = \/E? — m? dE;. This implies, after integration, that:

1 4 ( Er
F = 3 {E“/E% —m? — mf cosh™?! (m—1>} . (3.11)

The distribution of events can then be plotted in the Fj Fs-plane and resonances may be directly
read off the plot, like in case of three particles. Fig. shows an exemplary Chodrow plot
for the pp — ppK ™K~ reaction at @ — 28 MeV simulated assuming homogeneous phase space
distribution. The modification of the event density on the plot caused by proton-proton final
state interaction (pp-FSI) is clearly seen by comparing left and right plots. One can see that
the physically allowed region on the Chodrow plot is bounded by a well defined curve, but the
distribution is not homogeneous which is obviously a disadvantage. It is also worth mentioning,
that the event distribution in (Fy, Eo) variables is not lorentz invariant, so one cannot compare

Chodrow plots determined in different reference frames [41].

3.2.2 Goldhaber and Nyborg plots

According to Nyborg several other extensions of Dalitz plot can be obtained if one assumes, that

the matrix element M depends only on the invariant masses of two- and three particle subsytems
[19].
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Figure 3.5: Nyborg plot for the pp — ppK T K~ reaction simulated at Q — 28 MeV for the homogeneously

populated phase space (left plot), for the case when proton-proton final state interaction is additionally

taken into account (middle plot), and with only pK ™ final state interaction included (right plot).

From six two-particle and four three-particle invariant masses only five are independent due to

the following relations [19]:

4 4
Y MEi=s+2> m}, (3.12)
i,j=1(i>3) i=1
M1223 :M122+M223+M123—m%—m§—m§ )
Misy = Mis + M3, + M7y —mi —m3 —mj , (3.13)

) 2 2 2 2 2
Misy = My + My, + My, —my —m5 —my
2 as2 2 2 2 2 2
Mgy = Msy + M3, + My, — m5 —ms —mj .

Under the assumption, that the matrix element depends only on invariant masses one can, as in

the Chodrow approach, integrate equation ([B.7) over the delta functions and spatial orientations.
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The result can be expressed as a distribution with some choice of the five independent invariant
masses [19]. An especially convenient choice is M3, M2,, M%,, M%,, and M%, [19]. Using such

variables, after integrations, one obtains an event distribution in the following form:

w2 1
&P = = |M|? 5 dME, dM2, dM3E, dME,, dMs, (3.14)

Where B is a function of the above-mentioned invariant masses, which exact form can be found in
Nyborg’s work [19]. An advantage of the choice of mass variables used here is the high symmetry
of the function B [19], which is very usefull in consideration of the boundary of the physically
allowed region in the (M3, M3,, M, M?,,, M{s,) space defined by:

B =0. (3.15)

However, if the matrix element does not depend on all the selected invariant masses, distribu-
tion [B14] can be again integrated over this variables. Let suppose, that M depends for example
only on M%, M2, and M3,,, which in case of the pp — ppK+ K~ reaction can be interpreted as

2 2 2
M, My j— and MppK,,
in subsystems characterized by the remaining invariant masses [19]. After integration over M,

and M%, one gets [19]:

respectively. This means that we assume that there are resonances only

3

8sM?3,

d*P = |M|? g (MEy,m?,m3) dMZ, dM3, dMp, (3.16)

where g is a function defined as:

s = /[~ -] 2 - w27 .17

The physically allowed region is then a volume in the (M%,, M3,, M?,,) space bounded by a well
defined, cusped surface [19].

If we additionally change the integration variables to invariant masses the projection of the physical
region on the (Mja, M34)-plane gives a convenient and simple distribution, which can be used to
analyse the final state interaction in the same way as in case of three particles. Such analysis was
originally made by Goldhaber et al. in 1963 [17,18]. Therefore, after Nyborg et al. [19], we will
refer to the above mentioned projection as to the Goldhaber plot.

As it is shown in Fig. B4 the physically allowed region on the Goldhaber plot is a right isosceles
triangle within which the area is not proportional to the phase space volume [19]. Moreover the
density of events on the Goldhaber plot in case of absence of any final state interaction is also not
homogeneous. However, it is still a very convenient tool due to its lorentz invariance and simple

boundary equations [19]:
M12+M34:\/§, Myis =m1 +mo , M3y =ms3+my . (318)

It is worth mentioning that the projection on the (M2, Mia4)-plane, hereafter referred to as the
Nyborg plot [19,39], gives a very similar event distribution, which is again an isosceles triangle
bounded by [19]:

Mgy = Miz +my , Mig=my+ma, Mizg=+/s—m3 . (3.19)
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The other properties of this distribution are exactly the same as in the case of the Goldhaber plot

(see Fig. B3)).
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Figure 3.6: (Upper panel): Goldhaber plot for the pp — ppK ™ K~ reaction simulated at Q = 28 MeV for
a homogeneously populated phase space under the assumption that M, ;- is in the range from 1.432 MeV
to 1.433 MeV (left plot) and in the range from 1.459 MeV to 1.460 MeV (right plot). (Lower panel):
Nyborg plot for the pp — ppK K~ reaction simulated at Q = 28 MeV for a homogeneously populated
phase space under the condition that M, is in the range from 1.432 GeV/c® to 1.433 GeV /c* (left plot)
and in the range from 1.459 GeV/c® to 1.460 GeV/c? (right plot).

Very interesting may be the comparison how the interaction between particles show up on
Goldhaber and Nyborg plots. As it is depicted in Fig. B4 and Fig. (middle plots), for both
plots the modification of event density due to pp—FSI appears to be very similar. On both distri-
butions we observe a strong enhancement in the region of small proton-proton invariant masses.
However, when we take into account only the p K ~—FSI the situation changes and the modification
of event density on the Goldhaber and Nyborg plots is small, but still visible. In order to study
in more detail how the pK ~ interaction modifies the Goldhaber and Nyborg plots we simulated
both distributions demanding, that the invariant mass of at least one pK ~ subsystem is in various
ranges. In Fig. we present results obtained under the assumption that the Mg - is within a
range from (m, + mg-) to (m, + mg- + 0.001 GeV/c?) and from (m, + mg- + 0.027 GeV /c?)
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to (m, + mg- + 0.028 GeV/c?). It is clearly seen, that under such assumptions the physically
allowed region on the Goldhaber plot is much bigger than on the Nyborg plot, especially for low
M

P
events are confined to a small part of the Nyborg plot and are distributed on much larger surface

k- invariant masses. This means, that in the region, where p K ~—FSI is expected to be strong,

on the Goldhaber plot. That is why one expects larger effects from the p/K~ final state interaction
in the Nyborg plot then in the Goldhaber distribution. It is worth mentioning, that the above de-
scribed differences between this two generalizations of the Dalitz plot suggest, that the Goldhaber
plot is more appropriate in the analysis of the KK~ interaction, while in the investigation of the
pK ~—FSI one should use the Nyborg distribution.

Using the symmetry of the B function in equation (3I4)), several other two-dimensional distribu-
tions can be obtained [19]. However in the analysis of the K™K~ interaction, which is presented

in the next chapter, we use only the two distributions described in this section.



4. Study of the K"K~ final state interaction

4.1 Experimental Goldhaber and Nyborg plots

As it was mentioned in the previous chapters, the analysis of the K™K~ final state interaction
is based on data obtained in COSY-11 measurements at two beam momenta. For both energies we
chose events identified as a pp — ppK ™ X~ reaction with missing mass in the region of the kaon
(0.235 GeV? /et < m% < 0.25 GeV?/c?) [12]. Knowing the four-momenta of protons and kaons for
each event one can calculate appropriate invariant masses and construct the experimental event

distributions as described in the previous chapter.
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Figure 4.1: (Upper panel): Goldhaber plots obtained from measurements at Q = 10 MeV (left) and
Q = 28 MeV (right). (Lower panel): Nyborg plots obtained from measurements at Q = 10 MeV (left)
and Q = 28 MeV (right). Solid lines show boundaries of the physically allowed region.

Fig. 41l shows raw experimental event distributions determined at both excess energies. These

25
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distributions need to be corrected for the acceptance and detection efficiency of the COSY-11
facility. Only then it will be possible to extract the experimental differential cross sections. The
derived cross sections will be then compared to the results of the Monte Carlo simulations generated
with various parameters of KK~ interaction under the assumption that there is an additional
strong final state interaction in pp and pK~ subsystems [42]. A more detailed description is

presented in further parts of this chapter.

4.2 Corrections for the acceptance and detection efficiency

Pl iys)
dMpp dMpeq o °

data were first binned into intervals of AM = 2.5 MeV width for the measurement at Q — 10 MeV
and intervals of AM = 7 MeV for the data at Q = 28 MeV. The acceptance corrections were made

In order to obtain the experimental double differential cross sections

separately for each bin according to the formulae which will be derived in this section.

The number of experimental events in a given bin can be expressed as:

ANezp (MpvaK+K*) — dza (MppaMK+K*)
AMyy AMpcr g dMy, dMic+ -

Lint A(Mpp, Mg+5x-) (4.1)

where, A(Mp,, M+ k- ) denotes the COSY-11 acceptance and detection efficiency for the coinci-

dent measurement of protons and kaons, with invariant masses in the range:

AM, AM,
My € <Mpp - Tpp§ Myp + pp)
AM AM
Mgx € (MKK — 2KK; Mrr + 2KK) ;

and where L;,; denotes the luminosity integrated over whole time of the measurement:
Lint = / L(t)dt . (4.2)

From eq. (@) one can calculate the double differential cross section:

d*o (Mpp, Mg+ rc-) _ ANegp (Mypp, Mic+ -) 1
dMp, dM i+ - AMyp AMg+ g~ Ling A(Mpp, Mg+ x-)

(4.3)

The values of the integrated luminosity amount to L;,; — 2.770 & 0.056 pb~! for the measurement
at Q — 10 MeV and L;,; — 2.270 £ 0.007 pb~! at Q = 28 MeV [12]. To determine the acceptance
we first generated five milions of pp — ppK ™K~ events using a FORTRAN-based code, called
GENBOD [43]. It permits to generate four-momentum vectors of the outgoing particles in the
centre of mass frame with a homogeneous distribution in the phase space. The total centre of mass
energy as well as the number and masses of the particles are specified by the user [44]. Next for
each generated event a response of the COSY-11 detection system was calculated using a GEANT
3 based software package [45].
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Figure 4.2: (Upper panel): Experimental Goldhaber plots obtained after corrections for acceptance and
detection efficiency from measurements at Q = 10 MeV (left) and = 28 MeV (right). (Lower panel):
Goldhaber plots simulated at Q = 10 MeV (left) and Q = 28 MeV (right) with pp—FSI included.

Then we reconstructed the momenta and energies of the particles applying the same program
which had been used for analysis of the experimental data. The generated and reconstructed events
were binned exactly in the same way as it was described for the experimental data.

In order to account for the pp—FSI each event was weighted by the square of the proton-proton

scattering amplitude expressed as [27,46]:

e_i‘spp(ls()) - sin 61010(180)
Tk ’

Epp = (4.4)

where C stands for the square root of the Coulomb penetration factor [46], and k represents either
of the proton momentum in the proton-proton rest frame. The parameter 6,,('So) denotes the
phase-shift calculated according to the modified Cini-Fubini-Stanghellini formula with the Wong-
Noyes Coulomb correction [47-49]. A more detailed description of this pp—FSI parametrization can
be found in references [27,46-49].
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Finally the acceptance A (M,,, Mg+ -) was calculated using following formula:

Zwirec (Mpp, Mg+ 1)

A (Mpp, Myc+rc-) (4.5)

Z Wi (Myp, Mycs )
J

where w]° (M,,, M+ - ) denotes the weight for the i-th reconstructed event in a specific (Mpy,, M+ k- )
bin. Analogously w{*" (Mp,, M+~ ) stands for weight for the j-th generated event in the same

bin.

Knowing the acceptance of the COSY-11 detection setup and using eq. (@3] we obtained distri-
butions of the differential cross section. The results are presented in Fig. and
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Figure 4.3: (Upper panel): Experimental Nyborg plots after corrections for the COSY-11 acceptance
for the pp — ppK K~ reaction determined at Q = 10 MeV (left) and Q = 28 MeV (right). (Lower
panel): Event distributions obtained from simulations of the pp — ppK K~ reaction at Q = 10 MeV
(left) and Q = 28 MeV (right).

A qualitative comparison between measured and expected distributions indicates, that inclu-
sion of the pp-FSI is not sufficient to fully describe the experimental data. If the pK~ and KK~
were negligible, in the experimental distributions one would observe a big enhancement only in the

region of small M,,,, where protons have small relative momenta as it is seen in the simulations.
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But for the measurements we obtained a significant increase of the event density also in the region
of small Mg (Fig.FE2) and big M, - (see Fig.@3)), which may be a manifestation of the KK~
or pK~ interaction. Moreover in both experimental distributions the enhancement expected from
pp—FSI is shifted towards higher proton-proton invariant masses.

However, in order to draw conclusions in the next section we will carry out the quantitative com-
parison between analysed data and theoretical distributions simulated with different parameters

describing the final state interaction.

4.3 Determination of the scattering length of the KK~ interaction

To describe the experimental data in terms of final state interactions between the two protons,
K~ and protons and kaon and antikaon, we made the assumption that the overall final state

interaction enhancement factor can be expressed as a following product:
Frsr = Fpp X Fox- X Frig- (4.6)

where F,, - and Fp+ - denote the enhancement factor in the ppK~ and K™K~ subsystems

respectively. These factors can be expressed in the scattering length approximation as [15,42]:

5 - 1
PP (1 —ikrapk - ) (1 — ikaap )
1

Fre+ k- (4.7)

- (I —igagig-)’
where k1, ko and ¢ stands for relative momenta of particles in the first p K~ subsystem, second
pK~ subsystem and KK~ subsystem respectively. apx— and ag+ k- stands for the effective
scattering length of the appropriate interacting pair. In investigations described in this thesis we
assumed that the pK~ scattering length amounts to: a,x- = (0 + 1.5¢) fm as it was established
by the ANKE group [15].

Using the mentioned parametrizations of the final state interactions we compared the experimental
event distributions to the results of Monte Carlo simulations treating the K™K~ scattering length
as an unknown parameter, which has to be determined. For finding an estimate of the real and

imaginary part of ax+x— we constructed the y? statistic according to the method of least squares:

2
d’o; MC
2 B (dep dz\?Kﬂ(, —alVj (aK+K*)>
X (avaK+K*)_Z 52 ’
K2

i

(4.8)

where ﬁ denotes the differential cross section determined for a i*” bin of the experi-
pp K+tK—

mental Goldhaber or Nyborg plot and §; denotes its statistical uncertainty. N “(ag+x-) stands

for the content of the same bin in generated plots. « is a normalization factor. Re(ax+x-) and

Im(ag+g-) was varied in the range from 0 to 10 fm for data at an excess energy Q = 10 MeV

and in the range from 0 to 1 fm for the data at Q = 28 MeV.

The method of least squares states that the best values of ayx+ - are those, for which x? is

minimal.
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Figure 4.4: (Upper panel)x? as a function of Re(ay+ ) and I'm(ax+ ) for Goldhaber (left plot)

and Nyborg (right plot) distributions at Q = 10 MeV; (Lower panel) analogous x> distributions at Q =

28 MeV .

Fig. 4 presents distributions of the minimal y? calculated at both energies as a function of the
real and imaginary part of the K™K~ scattering amplitude. At excess energy of Q — 10 MeV for
both Goldhaber and Nyborg plot the distribution has a minimum x?2 . at Re(ag+g-) — 11 + 8

fm and at Im(ag+x-) = 0+ 6 fm . In case of Q = 28 MeV we obtained:

ag+r- = (0.2 +0.2) + i(0.0 + 0.5) fm.

The statistical error was calculated by determination of the ag+ - interval within which the x2 .
changes by Ax? =1 [50].



5. Summary and conclusions

This thesis concerns the analysis of the K™K~ final state interaction which appears to be very
important in many physical topics like for example the structure of the lightest scalar resonances.
Measurements of the total cross section for the near threshold pp — ppK K~ reaction, performed
by COSY-11 and ANKE collaborations, reveal a significant enhancement between the experimental
data and theoretical expectations which neglect the interaction of the K™K~ pair. This obser-
vation encouraged us to extend the analysis of the pp — ppK ™K~ reaction into the differential
cross sections. The investigations were based on experimental data determined by the COSY-11
collaboration at excess energies of Q = 10 MeV and 28 MeV. For the purposes of the analysis
we introduced two generalizations of the Dalitz plot for four particles in the final state proposed
by Goldhaber and Nyborg. The experimental Goldhaber and Nyborg plots were compared to the
results of Monte Carlo simulations generated with various values of the KK~ scattering length.
Beside the kaon-antikaon interaction in the simulations the interactions in pp and ppK ~ subsys-
tems were taken into account.

The values of the K™K~ scattering length, determined using the least squares method, amount

to:
ag+x- = (11 £ 8) + (0 £ 6) fm for Q = 10 MeV
and
ag+x- = (0.2 £0.2) + (0.0 £ 0.5) fm for Q = 28 MeV .

Unfortunately, due to low statistics, the standard deviations of the obtained values are rather big.
The results indicate, that the K+ K~ final state interaction is negligible which is especially seen for
the analysis of the data at Q = 28 MeV. But also for the data closer to threshold the determined
scattering length is consistent with zero within the standard statistical accuracy. This suggests
that both the real and imaginary part of ax+ g _ are rather small and amount to a fraction of fm.
It is worth mentioning, that there is another measurement of the pp — ppK+ K~ made by COSY-
11 at Q = 4.5 MeV, which is at present under analysis [51]. Data obtained from this measurement

may be very useful in the future to determine the kaon-antikaon scattering length more precisely.
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