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Abstract

The η-mesic nucleus that is the bound state of a nucleus and η meson has been
postulated theoretically in 1986 but has not been observed in the experiments yet.

In May-June 2014, the experiment devoted to the search for the bound state of
the η meson and 3He nucleus has been performed at COSY accelerator in Research
Center Jülich in Germany with WASA-at-COSY facility. The excitation functions for
pd →3He2γ, pd →3He6γ, pd → pppπ−, pd → ppnπ0, pd → dnπ−, pd → dpπ0, pd → pd,
and pd → ppn reactions have been measured in the vicinity of the η meson produc-
tion threshold. The experiment was carried out using COSY ramped proton beam
and deuterium pellet target. The beam momentum varied continuously in the range of
1.426−1.635 GeV/c corresponding to 3He−η excess energy range from −70 to +30MeV .

This dissertation is devoted to the search for η mesic 3He nucleus in the non-mesonic
decay channels: pd →3He2γ and pd →3He6γ reactions. The excitation functions for
these processes were obtained after identification of all outgoing particles and selection of
events with conditions based on the results of Monte Carlo simulations of direct decay of
η meson bound in the 3He nucleus. The integrated luminosity dependence on the excess
energy, used for the excitation function normalization, was calculated based on pd→3Heη

and pd→ ppnspectator reactions.
The analysis of the obtained excitation functions for the pd →3Heη indicate slightly

the signal from the bound state for Γ > 20 MeV and B ∈ [0; 15] MeV . However, the
observed indication is in the range of the systematic error. Therefore the final conclusion
of this thesis is that no narrow structure that could be interpreted as η-mesic nucleus was
observed in both excitation curves. Thus, the upper limit for the total cross section of
the bound state formation was estimated assuming that the η decay branching ratios in
the bound state is the same as in free space. The upper limit at the 90% confidence level
varies from 2 to 15 nb within the binding energy range from 0 to 60 MeV and the width
from 2.5 to 40 MeV .





Streszczenie

Jądra η-mezonowe, które są stanem związanym jądra i mezonu η, zostały zapostu-
lowane teoretycznie w roku 1986, jednak do tej pory nie zostały zaobserwowane ekspery-
mentalnie.

Na przełomie maja i czerwca 2014 roku przeprowadzono eksperyment na akcelera-
torze COSY w Centrum Badawczym w Jülich w Niemczech z wykorzystaniem detektora
WASA, którego celem było poszukiwanie stanu związanego 3 He z mezonem η. Krzywe
wzbudzenia dla reakcji pd→3 He2γ, pd→3 He6γ, pd→ pppπ−, pd→ ppnπ0, pd→ dnπ−,
pd→ dpπ0, pd→ pd oraz pd→ ppn zostały zmierzone wokół progu na produkcję mezonu
η. Pomiar przeprowadzono z wykorzystaniem wiązki protonów oraz tarczy pelletowej
deuteru. Pęd wiązki zmieniano w sposób ciągły w zakresie od 1.426 do 1.635 GeV/c, co
odpowiada zakresowi energii wzbudzenia Q3Heη od −70 do +30 MeV .

Tematem niniejszej pracy jest poszukiwanie jądra mezonowego 3 He-η w niemezonowych
kanałach rozpadu: pd→3 He2γ oraz pd→3 He6γ. Krzywe wzbudzenia dla tych procesów
otrzymano po identyfikacji wszystkich emitowanych cząstek i zastosowaniu odpowied-
nich warunków opartych na wynikach symulacji Monte Carlo dla rozpadów związanego
mezonu η. Zależność całkowalnej świetlności od Q3Heη potrzebna do normalizacji krzy-
wych wzbudzenia została obliczona w oparciu o reakcje pd→3 Heη oraz pd→ ppnspectator.

Wyniki analizy funkcji wzbudzenia wskazują iż możliwe jest istnienie stanu związanego
o szerokości Γ > 20 MeV i energii wiązania B ∈ [0; 15] MeV , jednakże zaobserwowana
struktura mieści się w zakresie niepewności systematycznej. Ostatecznym wynikiem anal-
izy jest więc brak obserwacji sygnału, który mógłby zostać interpretowany jako sygnatura
na istnienie jądra mezonowego. Dlatego też, wyznaczono górną granicę na przekrój czynny
dla produkcji stanu związanego, zakładając że współczynniki rozgałęzienia dla rozpadów
mezonu η związanego w jądrze mezonowym pozostają takie same jak dla rzeczywistego
mezonu η. Górna granica na poziomie ufności 90% zmienia się od 2 do 15 nb w zakresie
energii wiązania od 0 do 60 MeV oraz szerokości od 2.5 do 40 MeV .
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Chapter 1

Introduction

The nature of the strong interaction mechanism is much more complex than in case of
electromagnetic and weak interactions. The main reason is that the perturbative approach
that allows to build the theory of electro-weak interaction cannot be applied for strong
forces at low energies. According to Quantum Chromodynamics (QCD), the strong inter-
action, unlike electromagnetic forces, is caused by color charge that has more complicated
SU(3) symmetry. Strongly interacting particles (hardons) consist of quarks that are in-
teracting via exchanging gluons. Hardons are neutral from the color charge point of view.
Most frequently observed hadrons consist of three quarks (baryons) or quark-antiquark
pairs (mesons). There are many known particles belonging to these two groups. Most
important of them are proton and neutron, two baryons that are the building blocks for all
atomic nuclei. However, there are another objects such as hypernuclei [1], tetraquarks [2],
pentaquarks [3], or dybarions [4–6] that are less stable and thus harder to be registered.
The experimental investigations connected with such exotic matter are very useful for
testing the theories describing the strong interaction.

One of theoretically predicted kind of exotic nuclear matter that has not been observed
yet is mesic nucleus. It consists of nucleus bound with neutral meson e. g. η, η′, or ω.
Neutral meson can be bound only due to the strong interaction, thus investigations in this
field can improve the knowledge about the strong forces. From theoretical point of view,
the most promising are η mesic nuclei that have been postulated in 1986 [7]. This study
is complex because of several reasons. Due to the short η lifetime, direct measurements of
ηN → ηN scattering are not actually possible. Coupled channel calculations taking into
account πN → ηN and several other reactions induced by π mesons allow to obtain the
η-nucleon scattering matrix [8]. Calculated without elastic data, the η-nucleon scattering
length is known with huge uncertainty that causes that the predictions about η mesic
nuclei are inexact as well. However, some theoreticians postulate the existing of η-mesic
helium [9,10] and even deuteron [11].

The question about changing the η meson properties when it is bound by nuclei is
one of especial interest. There are theoretical models predicting η mixing with η′ when

13



14 Introduction

embedded in nucleus [12,13]. Therefore, the investigations of η mesic nuclei is important
for understanding η and η′ structure.

The experimental method developed byWASA-at-COSY collaboration allows to search
for η mesic 3He nucleus in proton-deuteron collisions. The proposal for the experiment [14]
was presented at the meeting of the Program Advisory Committee in Research Center
Jülich in Germany and accepted for the realization. The measurements, in which the
author o this thesis took part, were performed in May-June 2014 at COSY accelerator
by means of WASA detection system. Proton beam and deuterium pellet target system
were used. For reducing the systematic uncertainties in excitation curve measurement,
the ramped beam technique was applied. The beam momentum was changed constantly
in the range of 1.426− 1.635 GeV/c that corresponds to 3Heη excess energy range from
−70 to +30 MeV .

If the η mesic nucleus exists, it will influence the shape of excitation curves for
pd →3He2γ, pd →3He6γ, pd → pppπ−, pd → ppnπ0, pd → dnπ− pd → dpπ0, pd → pd,
and pd→ ppn reactions. This dissertation contains the description of experimental data
analysis connected with the first two non-mesonic reactions that can indicate the direct
decay of the η meson bound by nucleus. For the interpretation of obtained excitation
curves, Monte Carlo simulation for these two reactions was performed.

The thesis is divided into seven chapters. The second chapter contains the brief
review of existing theories and experimental data connected with η mesic nuclei. The
experiment description is given in the third chapter. The part of data analysis related to
the luminosity estimation is described in the fourth chapter. The fifth chapter is devoted
to the determination of excitation curves for pd→3He2γ and pd→3He6γ reactions. The
interpretation of the obtained results is given in the chapter number six while the seventh
chapter contains the conclusions.



Chapter 2

Theoretical and experimental
background

2.1 Theoretical predictions for η-mesic nuclei

The question about η-nucleus bound state is connected with the question about η-nucleon
interaction. The coupled channel calculations performed based on the experimental data
reviewed in Refs. [15–18] result in the strong attractive interaction between η meson
and nucleon [19–24]. However, these results contain uncertainty that yields in different
predictions about η-nucleus bound state.

The standard theoretical approach to describe η-nucleus interaction is to build optical
potential based on the knowledge about η-nucleon interaction. One of the ways to do
that is "Tρ" approximation [25]:

Uopt = V + iW = −2π

µ
TηN→ηNAρ(r), (2.1)

where TηN→ηN is the transition matrix (known from η − N interaction), A denotes the
nucleus mass number, ρ(r) is nuclear density, and µ is the reduced η-nucleus mass. The
calculations using older η−N interaction data [7,26–29] result in prediction of η-nucleus
bound state existence for A ≥ 12 while the calculations using wider range of possible
η − N scattering length do not exclude the existence of η-mesic helium [9, 10] and even
deuteron [11].

Another popular approach is QCD based quark-meson-coupling (QMC). It assumes
that the η is submerged into the nucleus, couples to quarks, and mixes with η′ [12,13] (η
meson properties are explained in Appendix A). Solving Klein-Gordon equation in frame
of such model results in prediction of η mesic 6He, 11B, and 26Mg existence.

For lighter nuclei, the bound state can be manifested via poles of η-nucleus scattering
matrix. Solving few body equations results in the existing of d− η, 3He− η, and 4He− η
bound states [30, 31]. Newer calculations for dη, 3Heη, and 4Heη interaction taking into

15



16 Theoretical and experimental background

account the data about η production mechanism and the FSI (Final State Interaction)
[32,33] show that the bound states can exist only for small values of aηN scattering length
in the range that is actually postulated. The higher values correspond to resonances.

Theoretical investigations connected with η-mesic nuclei are reviewed in Refs. [33–35].
One of recent η3He interaction theoretical investigations [36] takes into account the

total cross sections and asymmetries for pd→3Heη reaction near threshold. The optical
potential is calculated from these data and the scattering amplitude is determined. Due
to these results, a bound state with the binding energy of 0.3 MeV and width of 3 MeV

is expected. The estimated cross section of the bound state forming and decay in pd →
(3He− η)bound →3 He3π0 is about 0.4 nb [14].

For the case of η-mesic 4He, theoretical investigations taking into account the data
about η production near threshold have been performed [37]. Phenomenological approach
allowed to build an optical potential reproducing the experimental data quite well for
broad range of the potential parameters. The cross section for dd→ (4Heη)bound →3He p π−

bound state decay channel is estimated at 4.5 nb [38].

2.2 Previous experiments on search for η-mesic nuclei

After being postulated [7], η-mesic nuclei were searched for in experiments with pion [39,
40], photon [41–43], proton [44,45], and deuteron [46,47] beams. More detailed review of
previous experiments devoted to η-mesic nuclei search can be found in Refs. [34,35].

The strongest claim about existing of such bound state was made by COSY-GEM
Collaboration [44]. The reaction p+27Al→3He+η25Mg →3He+p+π−+X was studied.
The excitation energy spectrum obtained in these measurements shows an enhancement
at the energy about 13MeV below the η creation threshold that is in agreement with the
theoretical prediction [29].

The recent search of η-mesic 4He provided by WASA-at-COSY Collaboration [35,53,
54] results in the upper limit of 3 − 6 nanobarns for dd →3He n π0 and dd →3He p π−

bound state decay channels (Fig. 2.1). This result was compared [55] with the theoretical
estimations [37]. The experimental data allow to exclude a wide range of possible param-
eters for η−4He optical potential. However, extremely narrow bound states with small
binding energy within the model [37] are not excluded [55].

Previous indirect experimental studies of near threshold η production in pd →3Heη

reaction [48,49] show that probably there is a pole in the production amplitude at excita-
tion energy of Q0 = [(−0.36±0.11±0.04)±i(0.19±0.28±0.06)]MeV that is in agreement
with data for γ 3He→ η 3He reaction [50,51]. The experimental search for η-mesic 3He

provided by COSY-11 collaboration [56, 57] resulted in the cross section upper limit of
70 nb for pd→ (3Heη)bound →3Heπ0 reaction.

The existing experimental data about η-mesic nuclei search are reviewed in details in
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Figure 2.1: The upper limit for dd → (4Heη)bound →3Henπ0 (left panel) and dd →
(4Heη)bound →3Hepπ− (right panel) reactions obtained in Ref. [35]. The assumed binding
energy is equal to 30MeV . Red color shows the upper limit. Green color shows systematic
uncertainty. The picture was taken from Ref. [35].

Refs. [34, 35,57–59].

2.3 Motivation

Actual knowledge about η-nucleon interaction potential is not exact because experimental
investigations of ηN → ηN scattering are actually not possible. This uncertainty does
not allow to determine the potential of η-nucleus interaction exactly and to definitely
conclude if the η-mesic nuclei exist.

In case if the mesic nuclei are observed, it would become possible to investigate chang-
ing of η meson properties when it is bound by nucleus. Such effects are postulated in some
theories [12,13] and can provide us better understanding of strong interaction mechanism
at low energies.

In case if the η-mesic nucleus is not observed in the experiment, a new more accurate
upper limit value for the bound state formation cross section is determined. This value
can be useful for excluding a part of η-nucleus and η-nucleon interaction parameter range
postulated in the theories but not realistic according to new experimental data. Such
comparison between experiment and theory was made in Ref. [55] after the new upper
limit for 4Heη bound state formation cross section was obtained [35].

Actually, no experiment has proven the existing of η-mesic 3He nucleus. However,
the pd →3Heη cross section above the threshold is better described by FSI calculations
assuming that the bound state exists [33] and has the binding energy of several MeV .

The statistics gathered by WASA-at-COSY Collaboration in May-June 2014 [14] for
proton-deuteron collisions with beam momentum values close to η creation threshold is
the best one ever obtained for similar conditions. The sensitivity of current experiment
allows to measure the cross sections with better accuracy than currently measured upper
limit for the bound state formation in proton-deuteron collisions [56, 57].



Chapter 3

Experiment

This chapter contains the description of experiment on searching for η-mesic 3He that was
carried out in Jülich (Germany) in May-June 2014. The first section contains COSY ac-
celerator complex brief description. In the second section, the WASA-at-COSY detection
system description is presented. Brief data analysis software tools review is presented
in the third section. The conditions of current experiment are described in the fourth
section.

3.1 COSY accelerator

Cooler Synchrotron COSY accelerator complex [60] in Jülich Research Center consists of
184 m synchrotron ring, isochronous cyclotron JULIC (injector), and internal and external
experimental targets (Fig. 3.1). The accelerator works with proton and deuteron beams
either polarized or unpolarized that can be accelerated to the momenta of 0.3 - 3.7 GeV/c.
The ring can be filled with 1011 unpolarized particles. Such intensity allows to reach the
luminosity of 1031 cm−2s−1 for experiments with cluster target (ANKE, COSY11) [61,62]
and 1032 cm−2s−1 for pellet target applied at WASA [66]. Beam injection, accumulation,
and acceleration with COSY facilities takes few seconds and its lifetime in case of using
pellet target like in WASA is about several minutes. Beams at injection are cooled by
means of electron cooling, while stochastic cooling is used for high energies [63]. More de-
tailed COSY accelerator description can be found in Ref. [64]. The review of experiments
performed at this accelerator can be found in Ref. [65].

3.2 WASA-at-COSY detector setup

WASA (Wide Angle Shower Aparatus) detection system [66–69] was installed at COSY
since 2007 till 2014. Before 2005 it was operating at CELSIUS storage ring at Svedberg
Laboratory in Uppsala, Sweden [67]. WASA detector has almost 4π geometry and consists

18



WASA-at-COSY detector setup 19

Figure 3.1: The scheme of COSY accelerator facility. The figure is taken from Ref. [35].
TOF , PAX, EDDA, and ANKE names show other experiments implemented at COSY
accelerator. The label WASA shows the detection system used for the experiment de-
scribed in this thesis.
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Figure 3.2: The scheme of WASA detector vertical cross section in the configuration
used in experiment described in this thesis. The reaction takes place in the center of
the detector in the pellet line and COSY beam axis cross point. The Central Detector
is designed for registering neutral and charged meson decay products. The scattered
projectiles and recoil nuclei are registered in Forward Detector. The abbreviations used
as detectors names are explained in the text (Sections 3.2.1, 3.2.2 and 3.2.3).

of two parts: Central Detector and Forward Detector (Fig. 3.2).

3.2.1 Pellet target

The internal pellet type target [70] is installed in the Central Detector and it’s position
is marked by a vertical line in Fig. 3.2. The target system provides frozen gas pellets (in
current experiment it was deuterium) into the interaction point. The production of pellets
starts in the pellet generator that forms them of high purity liquid gas using a vibrating
nozzle. Vibration frequency of 70 kHz allows to produce pellets with the average diameter
of ≈ 35 µm. After production, the pellets get into 7 cm vacuum-injection capillary where
they are accelerated up to 60−80m/s. The accelerated pellets are colimated and provided
into the interaction region. The average rate of pellets passing the interaction point is
few thousands per second.
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3.2.2 Central Detector

The Central Detector built around the interaction point is designed mainly for measuring
photons and charged particles originating from mesons decays. It consists of several sub-
detectors playing different roles in particles registration and identification.

The part closest to the interaction point is the Mini Drift Chamber (MDC). It consists
of 1738 straw tubes arranged in 17 layers and covers the angular range from 24o to 159o.
The straw diameter is 4 mm for the first 5 inner layers. Next 6 middle layers consist
of straw tubes with 6 mm diameter. The 6 outer layers are formed by 8 mm diameter
straw tubes. The straws are made of 25 µm thin aluminized mylar foil and are filled with
argon-ethane 50% − 50% gas mixture. Inside the straws, 20 µm diameter gold wire is
used as an anode. Nine inner layers are parallel with respect to the beam axis while the
next layers are situated with 6o− 9o skew angles. The Mini Drift Chamber main purpose
is particle momenta directions and reaction vertex position determination.

Plastic Scintillator Barrel (PSB) surrounds the Mini Drift Chamber and is used to
identify charged particles. It consists of cylindrical part (48 scintillator bars) and two
endcaps (48 "cake-piece" shaped scintillators each one) covering almost full wide angular
range. This sub-detector can also be used for ∆E − E particle identification method
together with SEC (Fig. 3.2) or ∆E − p method together with MDC.

The Superconducting Solenoid [71] surrounds the Central Detector parts described
above and provides the magnetic field used for charged particle identification. This mag-
netic field is taken into account in momentum reconstruction based on information from
MDC. The Solenoid is cooled with liquid helium and produces the magnetic fields up to
1.3 T .

The Scintillation Electromagnetic Calorimeter (SEC) is situated between Supercon-
ducting Solenoid and the iron yoke covering the whole Central Detector. It is composed
of 1012 sodium-doped CsI scintillating crystals. The angular range covered by this sub-
detector is from 20o to 169o. The crystals have truncated pyramid shape and are organized
in 24 layers. The energy resolution is about 3% for stopped charged particles, and about
8% for 0.1 GeV photons. More detailed Calorimeter description is given in Ref. [72].

3.2.3 Forward Detector

The Forward Detector covers angular range from 3o to 18o and is designed mainly for
charged particles registration.

The first part of the Forward Detector along the beam direction is Forward Window
Counter (FWC). It contains two layers (FWC1, FWC2) of 5mm thick plastic scintillators
connected to the photomultipliers via lightguides. The layers are mounted on paraboloidal
stainless steel vacuum window. The layers are shifted with respect to each other by a
half of an element. The FWC is used for the first level of the trigger logic and allows to
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identify charged particles originating from the reaction point and to reduce the background
of particles scattered downstream the beam pipe.

The Forward Proportional Chamber (FPC) is located directly after the FWC. This
module contains four layers of straw tubes. Each layer consists of 122 tubes. The tubes are
made of thin mylar foil and have 8 mm diameter. They are filled with argon-ethane gas
mixture and work as proportional drift detectors. The layers have orientations respectively
−45o, +45o, 0o and 90o with respect to x direction. These straw tube layers are used for
measuring charged particle track angles. The module provides 0.2o angular resolution.

The Forward Trigger Hodoscope (FTH) earlier consisted of three thin plastic scin-
tillator layers. It was used for angular information measuring but two of three layers
were removed before current experiment. Only one layer (FTH1) consisting of 48 radial
elements was left. Thus, in current experiment, it can be used only for charged particle
identification using ∆E − E method together with FRH module.

The Forward Range Hodoscope (FRH) contained three layers of 11 cm thick plastic
scintillators during the current experiment. Earlier, it contained more layers but they
were removed. This thick scintillators are used mainly for measuring charged particles
energy.

3.2.4 Data Acquisition system (DAQ)

The DAQ system stores the digitized signals from the detector modules to make them
available for the analysis (Sec. 3.3). In current experiment, the third generation of COSY
DAQ system was used (Fig. 3.3). It is optimized for experiments with high luminosi-
ties [73] and allows to reach the event rate of 104 s−1 with at least 80% lifetime [75].

Figure 3.3: The scheme of data acquisition system for WASA-at-COSY. The figure is
taken from Ref. [74].
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The analogue signals from the detectors are processed by FPGA based front-end elec-
tronics and then digitized by QDC (Charge-to-Digital Converter) and TDC (Time-to-
Digital Converter) modules.

The digitized signals are marked with timestamps and put in FIFO queue ("First In
First Out" queue). Trigger system checks the conditions that are set up for a particular
experiment and drives the process of events forming. The synchronization system, called
by trigger system, calculates the event number, and sends it together with the time stamp
to all QDC and TDC modules. Signals with matching timestamps are marked with this
event number and pass to computer readout and to the event builder. Finally, the events
are stored to the discs. More detailed DAQ system description is given in Refs. [73–75].

3.3 Data analysis tools

Monte Carlo simulations for pd →3Heη (Sec. 4.2.1), pd → ppnspec (Sec. 4.3.1), pd →
(3Heη)bound →3He2γ, and pd → (3Heη)bound →3He6γ (Sec. 5.4) reactions kinematics
were done by software developed by the author of this thesis implementing the proper
theoretical models. Background reactions kinematics was simulated by PLUTO software.
The WASA detector response was simulated by WASA Monte Carlo (WMC) software
that is based on GEANT software [76]. The analysis of both data and simulation results
was performed by software developed by the author of this thesis based on RootSorter
framework [77] that is using data analysis software package ROOT [78] developed at
CERN. Other calculations, fits, and preparing the histograms shown in this thesis were
performed by the software developed by the author of this thesis.

3.4 Current experiment conditions

3.4.1 Ramped beam

The current experiment was carried out using ramped beam technique. The beam mo-
mentum was changed continuously in the range between 1.426 and 1.635 GeV/c that
corresponds to pd →3Heη reaction excess energy from −70 MeV to +30 MeV . The
beam momentum is known as a function on time-in-cycle that is stored by DAQ system
in each event header. Though relative energy changes for the beam are known precisely,
the absolute values depend on magnets settings. Thus, the beam momentum contains
unknown constant offset of the order of few MeV/c. This offset was determined from
kinematic conditions as it is described in Sec. 4.2.3.
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3.4.2 Trigger settings

Trigger system is used to determine which events are written to discs by the DAQ system
(Sec. 3.2.4). The conditions provided by trigger system are simple enough to be checked
in real time but allow to roughly reduce background events.

Condition Scaling factor
0 fwca1 20000
1 fwcb1 20000
3 fwHea1 200
4 fwHeb1 200
7 seln4 10
10 fwHea1|fwHeb1|fHedwr1 1
13 fHedwr1|seln4 10
17 psf1|psc1 4000
21 frha1|psc1 1
26 V fwc1|seln4s 10
29 fhdwr2|seln2 10
30 fhdwr2|selc2 10

Table 3.1: Trigger settings used in current experiment. Active triggers are shown with
bold font. The abbreviations used for trigger conditions are shown in Table 3.2. Letter
V before the abbreviation means veto condition. Triggers used in this thesis are shown
with bold font.

Abbreviation Meaning
fwcaN at least N modules above low threshold in FWC1
fwcbN at least N modules above low threshold in FWC2
fwHeaN at least N modules above high threshold in FWC1
fwHebN at least N modules above high threshold in FWC2
selnN at least N neutral groups in SEC (low threshold)
selcN at least N charged groups in SEC (low threshold)
fhdwrN at least N tracks matching between FWC, FTH, and FRH. Low threshold

of FWC used
fHedwrN same as fhdwrN but high threshold for FWC
frhaN at least N modules above threshold in FRH1
psfN at least N modules above threshold in PSB forward endcap
pscN at least N modules above threshold in PSB cylindrical part

Table 3.2: The abbreviations used for trigger conditions shown in the Table 3.1.
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Some trigger conditions occur with the event rate higher than the one that can be
reached by DAQ system. For such triggers, scaling factor is provided. Scaling means that
not every event matching the trigger conditions is written to disc but only those events
for which the event number modulo scaling factor is equal to zero.

The trigger conditions and corresponding scaling factors used in current experiment
are shown in Table. 3.1 and the abbreviations used for the conditions are explained in
Table. 3.2.

3.4.3 Data preselection criteria

The data stored by DAQ system using the trigger conditions still contains huge amount
of background events that can be reduced in order to decrease time of main analysis. This
reduction is performed by preselection procedure. A set of conditions that take very few
time to check is applied to the whole amount of raw experimental data obtained in the
measurements and only events fulfilling these conditions are stored into preselected data.

For pd →3Heη, pd →3He2γ, and pd →3He6γ reactions analysis (Section 4.2 and
Chapter 5), the events corresponding to trigger number 10 were taken into account and
the condition of at least one charged particle track in Forward Detector that contains
signal in FPC and corresponds to a particle stopping in FRH1 module is applied. Particles
stopping in FRH1 are required according to the simulation results showing that 3He ions
from these reactions stop in FRH1. The "stopping" condition means that the signal in
FWC1, FWC2, FTH1, and FRH1 is above the threshold and for FRH2 it is below the
threshold. The threshold values used in this analysis are given in Table. 3.3.

Module Threshold
FWC1 2.0 MeV

FWC2 2.0 MeV

FTH1 1.5 MeV

FRH1 1.0 MeV

FRH2 1.0 MeV

Table 3.3: Deposited energy thresholds applied for different Forward Detector modules.

The proton-proton quasielastic scattering analysis performed for luminosity determi-
nation (Sec. 4.3) required another preselection conditions. The events corresponding to
trigger number 17 were selected and the condition that at least two charged particle
tracks with the deposited energy above the threshold of 30MeV registered in the Central
Detector was applied.



Chapter 4

Luminosity determination

4.1 The method of luminosity determination

One of the most important issues in the experimental data analysis is normalization.
Luminosity is such normalization constant. It can be obtained e. g. by using a reaction
that has known cross section and then it is used for measuring other reactions cross
sections. The luminosity is defined by the following formula:

L =
dNtrue

dt

1

σ
=
dNregistered

dt

1

ε σ
, (4.1)

where σ is known reaction total cross section, dNtrue

dt
is the rate of this reaction events,

Nregistered is the number of registered events. It needs to be divided by the efficiency ε to
obtain the true events count.

The efficiency is obtained from Monte Carlo simulation for each particular reaction.
First, the reaction products kinematics is simulated. Then, WASA Monte Carlo software
is used to simulate the detector response (Sec. 3.3). These simulated data are analyzed by
the same algorithm that is used for the experimental data analysis (after the preselection
that is described in Sec. 3.4.3).

In this experiment, the value of integrated luminosity is used∫
Ldt =

Ntrue

σ
=
Nregistered

ε σ
=
Ndata Strigger SMC

NMC σ
, (4.2)

where Nregistered is the count of events registered by the detector, Ndata is the events
count obtained in raw data analysis, and NMC is the events count obtained with the same
algorithm analyzing Monte Carlo simulation results. Strigger is the scaling factor for the
trigger used in the experiment (Sec. 3.4.2). SMC is the total generated events count. NMC

divided by this value is equal to the efficiency.
The range of beam momentum used in current experiment corresponds to the following

range of the excess energy:

Q3Heη ∈ [−70;+30] MeV. (4.3)

26
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This range is split into 40 bins with the width of 2.5 MeV . The integrated luminosity is
obtained for each Q-bin separately.

4.2 Luminosity determination based on p+ d→3He+ η

reaction

The pd→3Heη reaction is visible only above the η creation threshold however this channel
analysis provides a lot of data useful for further analysis procedures. The most important
feature is obtaining the beam momentum correction constant. Also for this reaction, the
3He tracks and energy reconstruction algorithm was tested before it was used for analysis
of the channels that may show the existing bound state. In the beam momentum range
where the pd→3Heη reaction is visible, it has the cross section about 300 nb [80, 81].

4.2.1 Monte Carlo simulation of pd→3Heη reaction

Monte Carlo simulation was performed with the aim to obtain the detection and recon-
struction efficiency. Beam momentum values were generated uniformly distributed in the
part of the range used in current experiment (sec. 3.4.1) corresponding to Q3Heη > 0.
Assuming that target deuteron is at rest we have enough variables to obtain the total
invariant mass.

The final 3He nucleus and η meson momenta are obtained in the center of mass
frame. They have opposite directions and equal magnitudes that are determined by the
total invariant mass value. The most complicated issue is the angular distribution.

Taking into account the most recent experimental data [80] for this reaction, the
following approximation for the angular distribution in the center of mass system was
applied:

f(cos(θη,CM)) = N0(1 + αcos(θη,CM) + βcos(θη,CM)2 + γcos(θη,CM)3), (4.4)

where the α, β and γ parameters depend on the η meson momentum in the center of mass
frame that can be obtained from beam momentum value. Ref. [80] contains cross sections
and angular distributions for the beam momentum values corresponding to Q3Heη values
of 13.6 MeV and higher. The earlier experiments [81–83] allow to assume that the angular
distribution becomes symmetric with Q3Heη going down to zero. Since the papers [81–83]
contain only α parameter values, β and γ parameters extrapolation into Q3Heη region
below 13.6 MeV is needed (Fig. 4.1). The dependence of γ that corresponds to "asym-
metric" part of the distribution together with α parameter is extrapolated linearly as a
function of pη,CM . The β parameter, according to the data from Ref. [80], does not change
so drastically with the beam momentum. Thus, it was extrapolated as remaining at the
same level with pη,CM going down to zero.
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Figure 4.1: The values of α, β, and γ parameters for θη,CM distribution (Eq. 4.4) assumed
in current work for pd→3Heη reaction. Points show data from Ref. [80]. Line shows the
interpolation that was used for Monte Carlo simulation.

3He and η meson’s momenta vectors are transferred from the center of mass frame
into the laboratory frame. 3He ion and η meson decay products are registered. As far as
this part of analysis does not take η decay products into account, the decay simulation is
described later in sec. 5.4.

4.2.2 3He tracks reconstruction

In order to obtain the tracks corresponding to 3He ions in Forward Detector the trigger
number 10 was used (sec. 3.4.2). This trigger implements the set of conditions providing
selection of events containing at least one charged particle track in Forward Detector.
The routine for finding these tracks is implemented in RootSorter framework.

The first condition applied is that there is a signal in FPC-layer. The angle reconstruc-
tion algorithm implemented in RootSorter is applicable only in that case. When the signal
in FPC layer is present, the resolution of angular reconstruction is about ≈ 0.2o [34].

For being identified as 3He the tracks have to fulfill several conditions. Monte Carlo
simulation has shown that 3He ions that are products of pd→3Heη reaction mostly stop
in FRH1 layer. Thus the condition selecting tracks of charged particles stopped in this
layer was provided.

For separating 3He ions from lighter particles, a condition on the energy deposited in
FTH1 and FRH1 layers was applied (Fig. 4.2).

EFTH1 > h+max(0.05(100− EFRH1),−0.02(EFRH1 − 100)), (4.5)

where all numeric constants added to energies are given in MeV units. FTH1 and FRH1
layers were selected as two last layers where 3He ions deposit their energy. The h param-
eter equals 10 MeV and is used for systematic error estimation (Table 4.2).
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Figure 4.2: 2-D histograms of energies deposited in FTH1 (vertical axis) and FRH1
(horizontal axis) for all events with signal in FPC (left panel) and events that were
identified as 3He (right panel).

The reconstruction of kinetic energy required new algorithm because two layers were
removed from Forward Detector before current experiment.

The energy reconstruction was performed based on Monte Carlo simulations of pd→3Heη,
pd→3He2π0, and pd→3He3π0 reactions. Using the simulation results, the kinetic energy
was fitted by the following function:

Ekin = f0(θ) + f1(θ) ∗ EFRH1, (4.6)

where each function

fi(θ) = ai + biθ + ciθ
2 (4.7)

is a polynomial with fitted a, b, and c coefficients. To avoid using of each single event as
a unique point for fitting algorithm the θ, EFRH1, and Ekin ranges were split into bins
(Table. 4.1). After the binning, each cell was used as a point to fit and the weight of each
point was the number of events in the cell.

Variable Range Bin width
θ 0.100 − 0.130 rad 0.002 rad

EFRH1 0 − 300 MeV 5 MeV

Etrue 200 − 500 MeV 5 MeV

Table 4.1: Splitting of θ − EFRH1 − Etrue space into bins for performing energy recon-
struction of forward 3He tracks.
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Also on this stage of 3He tracks reconstruction, the cut on polar θ angle was provided.
The cut position is set to the value of

θmin = 4.5o. (4.8)

This cut was applied for all analysis procedures that require 3He track reconstruction.
It allows to separate pd→3Heη reaction from bound state decay processes due to different
3He emission angular distributions.

4.2.3 The beam momentum calibration correction

Current experiment was performed using a ramped beam technique with beam momentum
changing slowly and constantly during every accelerator cycle. The calibration provided
by COSY accelerator team precisely describes the momentum changes but may contain
few MeV/c order of magnitude unknown constant offset ∆P (Sec. 3.4.1):

Pfinal = Prec(tcycle) +∆P. (4.9)

Figure 4.3: Distribution of reconstructed θ vs. Ekin values for 3He. Monte Carlo sim-
ulation (left panel), and the data (right panel). The values are shown for Q 3Heη bin
[20.0; 22.5] MeV .

The distribution of θ angle and kinetic energy for 3He tracks from pd→3Heη reaction
(Fig. 4.3) allows to provide the correction. The maximum θ angle in the distribution
allows to obtain the beam momenta from the reaction kinematics. The offset was set
for the best agreement between Monte Carlo simulation of pd →3Heη reaction and the
corresponding kinematic histogram obtained from the data (Fig. 4.3, 4.4). The offset
value was found to be:

∆P = 4.0 MeV/c. (4.10)
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Figure 4.4: The experimental θ angle distributions for the kinetic energy bin where the
maximum θ value is observed. Each plot shows events for different Q-bins (see 4.1). The
magenta curve shows the peak position obtained from simulation. The beam momentum
correction (eq. 4.10) is applied. Both curves are divided by corresponding total events
counts to fit into the same scale.

4.2.4 Fitting 3He missing mass distributions

The 3He missing mass spectra obtained in the experiment contain peak corresponding to
η meson mass. For each Q-bin separately, the background around η mass peak was fit by
fourth power polynomial.

Figure 4.5: Left: 3He missing mass spectrum obtained from data for the range of
Q3Heη ∈ [20.0; 22.5] MeV . The part of the spectrum that is considered to be background
is shown with green color and is fit with polynomial of fourth power. Right: The spectrum after
background subtraction. The part of the spectrum that was taken into account for η peak area
calculation is shown in cyan color. Monte Carlo simulation for the peak shape is shown with
orange line.
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The pd →3 Heη events count was obtained as the η-peak area after background
subtraction (Fig. 4.5). The area of η-peak obtained from Monte Carlo simulation divided
by total generated events count equals the efficiency for this reaction (Fig. 4.6).

Figure 4.6: The efficiency for the registration of pd →3Heη reaction. The vertical error
bars show the systematic uncertainties (Sec. 4.4).

To obtain luminosity in function of excess energy Q3Heη, the number of experimental
pd→3Heη events for each Q-bin was divided by the corresponding efficiency and the cross
section (Eq. 4.2). The cross section values are taken from [80,81] and linearly interpolated
in our excess energy range (Fig. 4.7).

Figure 4.7: Left: The estimation of the cross section values for pd →3Heη channel. Points
show experimental data from Ref. [80]. Error bars show linear interpolation used for luminosity
estimation. Right: Integrated luminosity obtained using pd →3Heη channel. Blue error bars
show statistical uncertainties while cyan error bars show systematic uncertainties.
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4.3 Luminosity determination based on pd→ ppnspec re-
action

Quasielastic proton-proton scattering is a good reaction for luminosity determination
because it is visible in the whole beam momentum range used in this experiment, has
large cross section about 30 mb (sec. 4.3.2), and is easy to identify. This reaction produces
two charged particles that have almost coplanar emission directions (just smeared due to
deuteron nucleons Fermi motion) and they appear in wide range of θ angles.

4.3.1 Monte Carlo simulation of pd→ ppnspec reaction

The simulation is performed in frame of the spectator model. The beam momentum values
are generated uniformly in the range that was used in the experiment (Sec. 4.1). The target
deuteron is assumed to be at rest and its nucleons momenta values are generated according
to Fermi momentum distribution that was calculated in frame of PARIS model [84] (left
panel of Fig. 4.8).

Figure 4.8: Left: Fermi momentum distribution for nucleons in target deuteron obtained
from PARIS model [84]. Right: The cross section of pd→ ppnspectator reaction calculated
in this work for the luminosity determination.

The spectator model assumes that effective coupled neutron mass is equal to free
neutron mass. The effective coupled proton mass is lesser than free proton mass due to
deuteron binding energy.

The data from Ref. [85] about proton-proton scattering cross sections were used. The
differential cross section as a function depending on beam momentum in target proton
frame and scattering angle in proton-proton center of mass frame is given there. Thus
the beam momentum 4-vector was transferred into target proton frame to obtain the
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products angular distributions and the scattered protons momenta were generated in the
proton-proton center of mass frame and then transferred to the laboratory frame.

4.3.2 Total pd→ ppnspec cross section

To obtain quasielastic scattering cross section, proton-proton scattering cross section was
integrated:

σpp =
1

2

∫ 2π

0

dφ

∫ π

0

dσpp
dΩ

sinθ dθ =

∫ 2π

0

dφ

∫ π/2

0

dσpp
dΩ

sinθ dθ. (4.11)

The formula contains coefficient 1
2
because protons are undistinguishable [86]. As far

as the angular distribution in center of mass frame is symmetric, one can integrate in half
of the angular range instead of multiplying by 1

2
.

After the proton-proton cross section is integrated, Monte Carlo simulation is per-
formed in order to obtain quasielastic scattering cross section. The deuteron nucleons
momenta are generated according to the Fermi momentum distribution like in the sim-
ulation described in Sec. 4.3.1 [84]. Then the beam momentum 4-vector is transferred
into target proton frame and its absolute value is used to obtain proper proton-proton
scattering cross section. The resulting quasielastic scattering cross section is calculated
as an average of proton-proton scattering cross sections obtained during the simulation.
This value is multiplied by the factor of 0.96 taking into account the shading effect [87]
caused by neutron shading the scattered protons. The result is shown in the right panel
of Fig. 4.8.

4.3.3 The algorithm of pd→ ppnspec events selection

In this work, quasielastically scattered protons are searched in the Central Detector. Such
events correspond to trigger number 17 (sec. 3.4.2) with condition of at least two charged
particle tracks in CD: at least one track registered in forward part of PSB and at least
one track in sidelong part of PSB (Fig. 4.9).

It is seen in ∆E −E spectra (Fig. 4.10) that the visible charged particles are protons
and background formed the most probably by π mesons. Nevertheless, no ∆E − E

particle identification was applied because there is a stronger condition like particles flight
directions coplanarity (Fig. 4.11). As far as no charged π mesons appear as product of
either binary or quasibinary reaction, this condition can be assumed to be strong enough
to reduce possible π+ and π− background.

One more important question is how to choose a pair of charged particle tracks if the
event contains more than two tracks. In that case the algorithm tests all possible charged
track pairs and selects the one which has the asimuthal φ angle difference the closest to
180o.
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Figure 4.9: A scheme explaining the condition of trigger 17 (sec. 3.4.2). Blue lines show
probable charged particles tracks directions.

Figure 4.10: The distribution of energy deposited in two parts of Central Detector by
charged particles registered in pairs. Horizontal axis: energy deposited in SEC; vertical
axis: in PSB (Sec. 3.2.2). Left side: Monte Carlo simulations for pd→ppnspec; right side:
data analysis.

Another selection criterium was associated with the choice of the proper range of time
difference for two protons as it is shown in Fig. 4.12. Appearing of two peaks is caused
by the fact that particles with different θ angles are registered by different parts of PSB
(Sec. 3.2.2) and the time of registration is measured differently and the offsets are not
corrected. The lower peak on time difference spectrum is reduced by the θ cut (Fig. 4.13)
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Figure 4.11: The distribution of φ angle difference for charged particle pairs being the candi-
dates for quasielastic proton-proton scattering products. Left side: Monte Carlo simulations for
pd→ppnspec; right side: data analysis.

applied due to the condition of trigger 17. After the angular cut, the additional cut
on time difference distribution is applied in order to reduce the remaining background
(vertical lines in Fig. 4.12).

Figure 4.12: Time difference distribution for the charged particle track pairs being candidates
for quasielastic proton-proton scattering. The distributions before and after cut on θ angular
distribution (Fig. 4.13) are shown.

After applying the conditions described above, the most essential part of background
formed by other charged particles registered in Central Detector is reduced. The rest of it
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Figure 4.13: The distribution of θ angles for charged particle track pairs being the candidates for
quasielastic proton-proton scattering products. The cut on charged particle θ angles is applied in
order to reduce second peak on time difference distribution (Fig. 4.12). Left side: Monte Carlo
simulations for pd→ppnspec; right side: experimental data.

can be easily seen in φ angle difference distributions (Fig. 4.14). For each Q-bin separately
(sec. 4.1), the background around the peak is fitted by a second power polynomial. This
fit allows to subtract the background in the peak area and obtain the events count for the
pd→ ppnspec reaction.

The efficiency obtained from Monte Carlo simulation does not essentially depend on
beam momentum and is about 10% (Fig. 4.15). The integrated luminosity was calculated
by the formula 4.2 and the result is shown in Fig. 4.16.

4.4 The systematic uncertainties estimation

In case of pd →3Heη reaction analysis, the systematic error has the following sources
(Table. 4.2). Due to smearing of kinematic distributions (Fig. 4.3, 4.4) that are used to
define the beam momentum correction constant, the accuracy for this constant is assumed
to be about 5%. The accuracy for the positions of the cuts (Fig. 4.2, 4.3) that are used
to identify 3He tracks is also assumed to be about 5%. The range used for background
fit on 3He missing mass distributions (Fig. 4.5) is defined with the accuracy of bin width
used in the analysis that equals 1 MeV.

The systematic error of p − p quasielastic scattering process analysis originates from
beam momentum correction constant inaccuracy, θ angular cut and time difference cut
positions (Fig 4.12, 4.13), and background fit range (Fig. 4.14) inaccuracies (Table. 4.3).



38 Luminosity determination

Figure 4.14: Left: the φ angle difference distribution obtained for
Q3Heη ∈ [20.0; 22.5] MeV (Sec. 4.1). The background around the peak is fitted
by the second power polynomial (cyan line). Right: φ angle difference distribution after
background subtraction. Data are shown by points while the line shown the simulation
results.

Figure 4.15: The efficiency for pd →ppnspec reaction obtained from Monte Carlo simula-
tion. The error bars show the systematic uncertainties.

For each analysis, the total systematic uncertainty was calculated by the formula:

∆Lsyst =

√√√√∑
i

(
|LPi=Pmax

i − Lfinal|+ |LPi=Pmin
i − Lfinal|

2
)2, (4.12)

where L is integrated luminosity value obtained in the analysis, i index denotes sum over
all parameters given in Table. 4.2 or 4.3 respectively, Pi in the index means which varied
parameter value is used for each L value in the formula, and Pmin

i and Pmax
i are minimum
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Figure 4.16: Integrated luminosity calculated based on Eq. 4.2. The results obtained
using pd→3Heη (cyan) reaction and quasielastic proton-proton scattering (magenta) are
shown. The statistical and systematic uncertainties are taken into account.

Parameter description Value Parameter
variation

Beam momentum correction constant (Eq. 4.10) 4.0 MeV ±0.2MeV

θ angular cut for forward tracks (Fig. 4.3, Eq. 4.8) 4.5o ±0.2o
3He identification cut height (Fig. 4.2, Eq. 4.5) 10 MeV ±0.5MeV

Background fit range (Fig. 4.5, left) 543 MeV
c2

±1 MeV
c2

Background fit range (Fig. 4.5, right) 553 MeV
c2

±1 MeV
c2

Table 4.2: The list of parameters contributing into systematic error for pd→3Heη reaction
analysis.

and maximum values for the parameter Pi. Index final denotes luminosity value that
was actually used as the final result.

4.5 Discussion of the results

Two reactions were used to determine the integrated luminosity for this experiment.
pd →3Heη reaction has the cross section about 300 nb and is visible only above the
η creation threshold (Sec. 4.1). Furthermore, there is strong efficiency dependence on
Q3Heη that makes this analysis less accurate. Quasielastic proton-proton scattering has
drastically larger cross section, about 30 µb, and is visible in the whole beam momentum
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Parameter description Value Parameter
variation

Beam momentum correction constant (Eq. 4.10) 4.0 MeV ±0.2MeV

Angular cut position (Fig. 4.13, horizontal axis) 35o ±1o

Angular cut position (Fig. 4.13, vertical axis) 42o ±1o

Time cut position (Fig. 4.12, left) −18 ns ±1 ns
Time cut position (Fig. 4.12, right) −9 ns ±1 ns
Background fit range (Fig. 4.14). Peak range is as-
sumed from 180o − x to 180o + x.

60o ±5o

Table 4.3: The list of parameters contributing into systematic error for pd→ ppnspectator
reaction analysis.

range used in this experiment with the efficiency that does not essentially depend on the
excess energy Q3Heη.

The more precise and informative curve obtained for pd→ppnspec reaction shows that
the luminosity decreases with beam momentum increasing. It is in agreement with the
prediction that target overlapping by the beam is changing during the acceleration cycle.

For normalization of excitation functions for pd →3He2γ and pd →3He6γ reactions
(Sec. 5.2), the integrated luminosity curve obtained for the quasielastic proton-proton
scattering is used. It is however, important to stress that above the threshold luminosity
determined based on the pd →3 Heη and pd → ppnspectator are consistent (Table. 4.4)
giving more confidence to the obtained results. Moreover, pd →3Heη reaction analysis
allowed to obtain very important beam momentum correction constant (Sec. 4.2.3) and
to test the algorithms for 3He tracks identification and reconstruction which are used for
further analysis.

Reaction Q3Heη range [−70;+30] MeV Q3Heη range [+12.5;+30] MeV

pd→3Heη - 399.7± 3.6± 53± 18 nb−1

pd→ ppnspec 2446± 3± 66± 4 nb−1 337.8± 1.3± 10± 0.7 nb−1

Table 4.4: Luminosity values calculated based on pd→3Heη and pd→ ppnspec reactions.
The uncertainty values given in the table: statistical, systematic, normalization.
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The analysis of pd→3He2γ and
pd→3He6γ reactions

5.1 Cross sections determination in current experiment

For the measurement of the cross sections, events count, efficiency, and the luminosity are
needed (Sec. 4.1).

The first analysis stage is Monte Carlo simulation of the analyzed reaction kinematics
and processing it with WASA Monte Carlo software (Sec. 3.3) in order to simulate the
detection system response. Then, the events identification algorithm is developed and
both simulation results and the data are processed by it.

After the events identification, the analyzed reaction cross section σ can be calculated
by the following formula:

σ =
Ntrue∫
Ldt

=
NsignalStrigger

ε
∫
Ldt

=
NsignalStriggerSMC

NMC

∫
Ldt

, (5.1)

where
∫
Ldt is the integrated luminosity from Eq. 4.2, Nsignal denotes the count of signal

events, and all other symbols have the same meanings like in this equation.

5.2 What reactions are studied?

This work is devoted to searching for 3Heη bound state using neutral channels of direct η
decay without being absorbed by any nucleons. Assuming that the decay branching ratio
for bound η meson does not essentially differ from free η decay branching ratio, η → γγ

and η → π0π0π0 → 6γ decay channels are expected to be the most intensive [94].
For both of these reactions, the expected analysis result is significant events count for

excess energy above zero (sec. 4.1) because of pd→3Heη reaction. Its cross section [80–83]
is about 300 nb in the Q3Heη range [10; 30]MeV . Below the threshold, in case if the bound
state is not observed, some count of background events is expected but essentially lesser
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than above the threshold. In case if the bound state exists and is observed, a Breit-Wigner
shaped peak is expected for Q3Heη < 0.

It is also possible that bound state creation and decay process can interfere with other
channels that have the same particles in the final state but the analysis performed in this
thesis does not take such possibility into account.

5.3 Bound state theoretical model

In current experiment, the 3Heη bound state is searched for in proton-deuteron collisions.
The mass of a bound state is a sum of 3He and η masses reduced by the binding energy:

mbs = m3He +mη −Bs. (5.2)

According to the model, the η meson in the bound system is orbiting around the 3He

nucleus and decays into 2γ or 3π0. The decaying η is assumed to move due to Fermi
motion. For calculating this momentum distribution the following 3He − η interaction
potential is postulated [90]:

V (r) = (V0 + iW0)
ρ(r)

ρ0
, (5.3)

where the assumed V0 and W0 parameters values are given in Table. 5.1, and ρ(r) is
Hiyama’s density distribution (ρ0 >> 0.17 fm−3) [88–90].

Then the Klein Gordon equation is considered:

[−∇2 + µ2 + 2µV (r)]ψ(~r) = E2
KGψ(~r), (5.4)

where ψ(~r) is the bound system’s wave function, µ is 3He − η reduced mass, and EKG
is Klein Gordon energy. This equation was solved by S. Hirenzaki and H. Nagahiro [90]
with potential parameters given in Table. 5.1 for the purpose of current analysis.

(V0,W0) [MeV ] (Bs, Γ ) [MeV ]

−(75, 20) (−4.02, 15.60)
−(80, 20) (−6.19, 17.39)
−(90, 20) (−11.10, 20.59)

Table 5.1: Different combinations of 3He − η interaction potential assumed in relative
motion momentum distribution calculation and corresponding binding energies and bound
state widths obtained from Eq. 5.5.

The binding energy and the bound state width can be obtained after Klein Gordon
equation is solved and are equal to

Bs = Re(EKG − µ), Γ = −2Im(EKG). (5.5)
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Then the radial wave function φ(r) defined by the following way:

ψ(~r) = φ(r)Ylm(r̂) (5.6)

is obtained from Eq. 5.4 and then is transferred into momentum space:

φ̃(p) =

∫
ei~p~rφ(r)d~r (5.7)

Figure 5.1: The distribution of bound 3He− η relative motion momentum calculated for
different assumption of interaction potential (Eq. 5.8).

The function φ̃(p) is used to obtain relative momentum distribution density (Fig. 5.1):

d(p) = |φ̃(p)|2p2, (5.8)

that is used in the 3Heη bound state production and decay Monte Carlo simulations.

5.4 The bound state production and decay Monte Carlo
simulations

The 3Heη bound state is simulated in frame of the spectator model. The beam momen-
tum values are generated uniformly in the range that fulfills the experimental conditions
(Sec. 4.1). The bound state invariant mass is obtained based on beam proton momentum.

The distribution of relative 3He−η momentum is assumed to be isotropic and absolute
value distribution was calculated by S. Hirenzaki and H. Nagahiro [90] (Fig. 5.1, Table 5.1).
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The 3He nucleus is assumed to be a spectator that means that its effective mass is
assumed to be equal to free 3He mass while bound η meson mass has to differ from free
η mass due to the total invariant mass conservation. This difference has to be taken into
account in η decay simulation.

η → γγ decay channel simulation requires only η meson 4-momentum. In the η rest
frame, two γ quanta have equal momenta with opposite directions and their energy sum
is equal to η effective mass. In the η rest frame, the decay is isotropic. Then γ quanta
momenta are transferred to the laboratory frame.

η → π0π0π0 channel simulation requires more complicated calculations. Let’s consider
the following invariants:

sij = |℘π0
i
+ ℘π0

j
|2, (5.9)

where ℘ symbol means 4-momentum and π0
i or π0

j means one of three decay products
(i = 1, 2, 3, j = 1, 2, 3). These invariants fulfill the following conditions

s12 + s13 + s23 = m2
η + 3m2

π0 , (5.10)

(2mπ0)2 < sij < (mη −mπ0)2. (5.11)

These conditions arrange the part of phase space that can be populated. This part
is assumed to be populated uniformly. The next stage is the energy and momentum
calculation for each π0:

E1 =
m2
η +m2

π0 − s23
2mη

;E2 =
m2
η +m2

π0 − s13
2mη

;E3 =
m2
η +m2

π0 − s12
2mη

(5.12)

p1 =
√
E2

1 −m2
π0 ; p2 =

√
E2

2 −m2
π0 ; p3 =

√
E2

3 −m2
π0 (5.13)

~p1 + ~p2 + ~p3 = ~0. (5.14)

The vectors in Eq. 5.14 are required to lie in one plane. Hereby, the planar vectors are
obtained first and then the decay plane is rotated in order to attain isotropic distribution
of its orientation.

Each π0 decays into two γ quanta. Such decay is simulated similarly to η → γγ decay.

5.5 The analysis of pd→3He2γ reaction

In this analysis, for pd→3He2γ events selection both 3He track in Forward Detector and
signals from two γ quanta in Central Detector are required. The 3He track reconstruction
algorithm is similar to the one used for pd→3Heη reaction analysis and described above
in Sec. 4.2.2.

The first condition that is applied for the events acts on 3He missing mass. The
momentum of the beam was varied in the range of the excess energies betwen −70 and
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Figure 5.2: The distribution of 3He missing mass corrected by Q3Heη obtained in
pd →3He2γ reaction analysis. Vertical line shows the cut position. Yellow points
show the events count after the requirement of two γ quanta in the Central Detector
is provided. As indicated in the legend above the pictures, the figure shows results of
the analysis of data simulated for pd → (3Heη)bound →3Heγγ, pd →3Heη →3Heγγ,
pd→3Heπ0π0 →3Heγγγγ and result of analysis of experimental data.
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Figure 5.3: Time differences distribution plots showing the conditions applied for selecting
proper γ pair in Central Detector for pd→3He2γ reaction analysis. Left: time difference
between the γ quanta; right: time difference between 3He track and the earliest signal
from γ. Vertical lines show the ranges used in the applied conditions. Blue points show
the distributions before applying the conditions and green points show the distributions
after applying the conditions.

+30 MeV . To take into account differences in the total reaction energy
√
s, the 3He

missing mass is corrected by Q3Heη (Fig. 5.2). Then γ pair is searched among all γ in
the Central Detector. It must fulfill the condition applied for time difference between γ
quanta (left panel of Fig. 5.3), time difference between 3He and the quickest γ (right panel
of Fig. 5.3), and condition applied for angle between γ quanta directions αγγ (Fig. 5.4). If
there are several possible combinations of γ tracks fulfilling this condition, the one having
invariant mass closest to (mη + Q3Heη) value is chosen. This value is equal to bound η

meson mass in frame of spectator model (Sec. 5.4) that is assumed for the bound state
decay.

In order to suppress background, additional cuts are applied. The first one is θ(~pγ1 + ~pγ2)

cut (Fig. 5.5). θ angle means the angle between the beam axis and the direction of γ quanta
momenta sum vector. Then cuts on γ quanta missing mass (Fig. 5.6) and invariant mass
(Fig. 5.7) are applied.

As far as missing mass conditions are sensitive to possible beam momentum correc-
tion inaccuracy, they cannot be strict enough to suppress all background. Hereby, the
additional angular conditions independent on beam momentum correction have been pro-
vided.

These conditions reduce background reactions registration efficiency to the level below
0.5% while the signal reaction efficiency is about 10% (Fig. 5.8). For Q3Heη > 10 MeV ,
pd →3Heη reaction is visible for the current analysis algorithm and the efficiency is
increasing up to almost 40%. The shape of total invariant mass difference m3Heγγ −mpd
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Figure 5.4: cos(αγγ) distribution obtained in pd →3He2γ reaction analysis. Vertical
line shows the cut position. Monte Carlo simulations for pd → (3Heη)bound →3Heγγ,
pd→3Heη →3Heγγ, pd→3Heπ0π0 →3Heγγγγ and data analysis. Magenta points show
the distributions without applying the conditions and green points show the distributions
with applying the conditions.
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Figure 5.5: θ(~pγ1 + ~pγ2) distribution obtained in pd →3He2γ reaction analysis. Ver-
tical line shows the cut position. As indicated in the legend above the pictures, the
figure shows results of the analysis of data simulated for pd → (3Heη)bound →3Heγγ,
pd →3Heη →3Heγγ, pd →3Heπ0π0 →3Heγγγγ and result of analysis of experimental
data. Magenta points show the distributions before applying the conditions and green
points show the distributions after applying the conditions.
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Figure 5.6: γγ missing mass distribution obtained in pd→3He2γ reaction analysis. Ver-
tical lines show the cuts positions. As indicated in the legend above the pictures, the
figure shows results of the analysis of data simulated for pd → (3Heη)bound →3Heγγ,
pd →3Heη →3Heγγ, pd →3Heπ0π0 →3Heγγγγ and result of analysis of experimental
data. Magenta points show the distributions before applying the conditions and green
points show the distributions after applying the conditions.
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Figure 5.7: The distribution of γγ invariant mass corrected by Q3Heη obtained in
pd→3He2γ reaction analysis. Vertical lines show the cuts positions. As indicated in the
legend above the pictures, the figure shows results of the analysis of data simulated for
pd → (3Heη)bound →3Heγγ, pd →3Heη →3Heγγ, pd →3Heπ0π0 →3Heγγγγ and result
of analysis of experimental data. Magenta points show the distributions before applying
the conditions and green points show the distributions after applying the conditions.
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Figure 5.8: The efficiency for different reactions when applying selection criteria defined
for the pd→3He2γ reaction analysis. Left: wider scale where the signal reactions are vis-
ible; Right: more narrow scale to see the background reactions. Systematic uncertainties
are shown.

distribution plot is in agreement with assumption that mainly pd→3Heπ0π0 background
reaction is observed (Fig. 5.9).

The events count in excess energy region Q3Heη > 10 MeV is compared with
pd→3Heη reaction events count estimated by the formula

N3Heη =

∫
Ldt ε3Heη σ3Heη

Strigger
, (5.15)

where all symbols have the same meaning like in Eq. 4.2. Both curves are shown in
Fig. 5.10 and are in agreement.
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Figure 5.9: Distribution of m3Heγγ − mpd obtained after all conditions in pd →3He2γ

reaction analysis are applied. As indicated in the legend above the pictures, the fig-
ure shows results of the analysis of data simulated for pd → (3Heη)bound →3Heγγ,
pd →3Heη →3Heγγ, pd →3Heπ0π0 →3Heγγγγ and result of analysis of experimental
data.
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Figure 5.10: The dependence of events count on Q3Heη for pd →3He2γ reaction. Blue
color: registered events count for full Q3Heη range; green color: expected pd→3Heη events
count calculated by the Eq. 5.15. Shown error bars include both statistical and systematic
uncertainties (Sec. 5.8).

5.6 The analysis of pd→3He6γ reaction

Like in pd →3He2γ reaction analysis (Sec. 5.5), trigger number 10 corresponding to the
condition of at least one charged particle track in Forward Detector was used (Sec. 3.4.2).
The same condition like in Sec. 5.5 on missing mass was used (Fig. 5.11).

Then registration of at least six γ quanta tracks in the Central Detector is required.
Among them, all combinations forming three pairs are tested. They must fulfill the
condition on time differences. Two time differences are considered: between 3He and the
quickest γ, and between the quickest γ and the slowest one (Fig. 5.12). As far as it makes
the difference, how the six γ quanta are divided into three pairs, this condition is not
enough. For each combinations forming three pairs, the following quantity is calculated:

D =
3∑
i=1

(mγ(2i−1)γ2i −mπ0)2, (5.16)

where mγ(2i−1)γ2i is the γ pair invariant mass and mπ0 is π0 mass. The combination having
this value the closest to zero is chosen. It is the most probable candidate to be product of
3π0 decay. Then value from Eq. 5.16 is required to be below the threshold of 0.05 GeV 2/c4

(Fig. 5.13).
Similarly to pd→3He2γ reaction analysis, the condition on θ(

∑
i ~pi) is applied (Fig. 5.14).
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Figure 5.11: The distribution of 3He missing mass corrected by Q3Heη obtained in
pd →3He6γ reaction analysis. Vertical line shows the cut position. Yellow points show
events count after six γ quanta in Central Detector are requested. As indicated in the
legend above the pictures, the figure shows results of the analysis of data simulated for
pd → (3Heη)bound →3He6γ, pd →3Heη →3He6γ, pd →3Heπ0π0π0 →3He6γ and result
of analysis of experimental data.
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Figure 5.12: Time differences distributions showing the conditions applied for selecting
proper γ track combination in the Central Detector for pd →3He6γ reaction analysis.
Vertical lines show cuts positions. Left: time difference between the quickest and the
slowest γ quanta; right: time difference between 3He track and the quickest γ track.

Figure 5.13: The distribution of D =
∑3

i=1(mγ2i−1γ2i −mπ0)2 magnitude that is used to
identify γ quanta being the product of 3π0 decay (Eq. 5.16). On the right panel, blue
points show the distributions before applying the conditions and cyan points show the
distributions after applying the conditions.
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Next applied conditions are the 6γ missing mass cut (Fig. 5.15) and 6γ invariant mass
cut (Fig. 5.16).

The pd→3Heη reaction is visible in the region of Q3Heη > 10MeV with the efficiency
increasing up to 10% (Fig. 5.17). The bound state registration efficiency weakly depends
on beam momentum and is about 4%. pd →3He3π0 background reaction registration
efficiency decreases from 6% down to 2% with the beam momentum increasing.

In the total invariant mass difference m3Heγγ − mpd distribution (Fig. 5.18, 5.19),
some extra background with the intensity comparable to pd →3Heη is visible. These
background events are also visible in excitation curve in the excess energy region Q3Heη >

10 MeV as the difference between registered events count and the estimation based on
pd→3Heη reaction and luminosity (Fig. 5.19). The difference between registered events
count and the estimation based on pd →3Heη reaction for these two distributions is in
agreement.
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Figure 5.14: θ(
∑

i ~pγi) distribution obtained in pd→3He6γ reaction analysis. Vertical line
shows cut position. As indicated in the legend above the pictures, the figure shows results
of the analysis of data simulated for pd → (3Heη)bound →3He6γ, pd →3Heη →3He6γ,
pd →3Heπ0π0π0 →3He6γ and result of analysis of experimental data. Magenta points
show the distributions before applying the conditions and green points show the distribu-
tions after applying the conditions.
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Figure 5.15: 6γ missing mass distribution obtained in pd →3He6γ reaction analysis.
Vertical lines show cuts position. As indicated in the legend above the pictures, the
figure shows results of the analysis of data simulated for pd → (3Heη)bound →3He6γ,
pd →3Heη →3He6γ, pd →3Heπ0π0π0 →3He6γ and result of analysis of experimental
data. Magenta points show the distributions before applying the conditions and green
points show the distributions after applying the conditions.



The analysis of pd→3He6γ reaction 59

Figure 5.16: The distribution of 6γ invariant mass corrected by Q3Heη obtained in
pd→3He6γ reaction analysis. Vertical lines show the cuts positions. As indicated in the
legend above the pictures, the figure shows results of the analysis of data simulated for
pd → (3Heη)bound →3He6γ, pd →3Heη →3He6γ, pd →3Heπ0π0π0 →3He6γ and result
of analysis of experimental data. Magenta points show the distributions before applying
the conditions and green points show the distributions after applying the conditions.
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Figure 5.17: Efficiency distribution for different reactions that are visible for pd→3He6γ

reaction analysis algorithm. Systematic uncertainties are shown.

5.7 The excitation curves

pd →3He2γ and pd →3He6γ reactions have been analyzed in order to search for the
signal from 3He − η bound state. The dependencies of events count on Q3Heη (sec. 4.1)
have been obtained for both of the reactions (Fig. 5.10, 5.19). For each Q3Heη interval
separately, this events counts are normalized using the formula:

Nnorm =
Ndata Strigger∫

Ldt ε
, (5.17)

where Ndata is events count obtained by data analysis algorithm, Strigger is trigger scaling
coefficient,

∫
Ldt is integrated luminosity (eq. 4.2) and ε is the efficiency.

Normalized excitation curves for excess energy region Q3Heη ∈ [−70; 10]MeV obtained
for both reactions are shown in Fig. 5.20.
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Figure 5.18: Distribution of m3He6γ −mpd obtained in pd→3He6γ reaction analysis. As
indicated in the legend above the pictures, the figure shows results of the analysis of data
simulated for pd→ (3Heη)bound →3He6γ, pd→3Heη →3He6γ, pd→3Heπ0π0π0 →3He6γ

and result of analysis of experimental data.
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Figure 5.19: Left: The distribution of invariant mass difference m3He6γ −mpd for events
in excess energy region Q3Heη > 10MeV ; registered events count (blue), and pd→3Heη

events count estimation (green). Right: The dependence of events count on Q3Heη for
pd→3He6γ reaction analysis; registered events count (blue color), and estimation based
on pd→3Heη reaction (green color).

Figure 5.20: The dependence of events count on Q3Heη for pd →3He2γ (left panel) and
pd→3He6γ (right panel) reactions normalized to cross section units.
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5.8 The systematic uncertainties estimation

For the excitation curves obtained in pd →3He2γ and pd →3He6γ analysis (Fig. 5.20),
the systematic error is caused by cuts positions, beam momentum correction constant,
model parameters inaccuracy, and systematic error of luminosity determination. As far as
the luminosity values obtained in pd → ppnspectator reaction analysis have been used, all
the parameters contributing to integrated luminosity systematic uncertainty (Table. 4.3)
need to be taken into account. The values of all analysis parameters contributing into
systematic uncertainties are given in Table. 5.2.

The total systematic uncertainty was calculated by the formula

∆Nsyst =

√√√√∑
i

(
|NPi=Pmax

i
norm −N final

norm |+ |NPi=Pmin
i

norm −N final
norm |

2
)2, (5.18)

where Nnorm is the events count obtained in the analysis, and i index and Pi have the
same meaning like in eq. 4.12
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Analysis Parameter description Value Variation
both All parameters from Table. 4.3
both θ angular cut for 3He tracks (Fig. 4.3, Eq. 4.8) 4.5o ±0.2o

both 3He identification cut height (Fig. 4.2, Eq. 4.5) 10 MeV ±0.5MeV

both Real part of potential assumed in the model [90]
(Fig. 5.1, Table. 5.1)

80 MeV +10MeV ,
−5 MeV

both 3He missing mass cut position (Fig. 5.2,5.11) 510 MeV
c2

±2 MeV
c2

both γ energy threshold 25 MeV ±2 MeV

both Time cut (Fig. 5.3, 5.12, left panel) 15 ns ±2 ns
both Time cut (Fig. 5.3, 5.12, right panel, left border) 0 ns ±2 ns
both Time cut (Fig. 5.3, 5.12, right panel, right border) 30 ns ±2 ns
both Cut on θ(

∑
~pγi) (Fig. 5.5, 5.14) 60o ±2o

6γ Cut for 3π0 decay identification (Fig. 5.13) 50 MeV 2

c4
±5 MeV 2

c4

both γ quanta missing mass cut position (Fig. 5.6, 5.15,
left border)

2700 MeV
c2

±10 MeV
c2

both γ quanta missing mass cut position (Fig. 5.6, 5.15,
right border)

3000 MeV
c2

±10 MeV
c2

2γ Cut on γ − γ invariant mass corrected by Q3Heη

(Fig. 5.7, left border)
450 MeV

c2
±10 MeV

c2

2γ Cut on γ − γ invariant mass corrected by Q3Heη

(Fig. 5.7, right border)
650 MeV

c2
±10 MeV

c2

6γ Cut on γ quanta invariant mass corrected by Q3Heη

(Fig. 5.16, left border)
350 MeV

c2
±10 MeV

c2

6γ Cut on γ quanta invariant mass corrected by Q3Heη

(Fig. 5.16, right border)
650 MeV

c2
±10 MeV

c2

Table 5.2: The list of parameters contributing into systematic error for pd →3He2γ and
pd→3He6γ reactions analysis.



Chapter 6

Results and interpretation

6.1 Upper limit for the η−3He bound state production
cross section

During the analysis of data collected in current experiment, the excitation curves for
pd→3He2γ and pd→3He6γ reactions have been obtained (Fig. 5.20) in order to search
for the 3Heη bound state. If the bound state is observed in current experiment, Breit-
Wigner shaped peaks would be present in both excitation curves in the same position.
Nevertheless, the shape of the curves can be well described with linear function fit resulting
in the χ2 per degree of freedom less than 1 (Fig. 6.1, 6.2), that means good description
of the experiment without assuming the η-mesic 3He.

Figure 6.1: Excitation curves fit by independent linear background.

Therefore, we can only determine the upper limit for 3Heη bound state formation
cross section. Though there are theoretical works resulting in that η meson embedded in
nuclear matter can change its properties [12,13], in current analysis, an assumption that
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the branching ratio for η → 2γ and η → 3π0 decay channels (Table A.1) for bound η

meson remains the same was made:

Pη→2γ = 0.3941± 0.0020, Pη→3π0 = 0.3268± 0.0023. (6.1)

The production cross section of the hypothetical bound state is assumed to have a
following energy dependence:

σb(Q3Heη, Bs, Γ, σ) = σ
Γ 2/4

(Q3Heη −Bs)2 + Γ 2/4
, (6.2)

where Bs is the binding energy, Γ is the bound state width, and σ is the amplitude.
For different assumed Bs and Γ values, the excitation curves for pd →3He2γ and

pd →3He6γ reactions (Fig 5.20) have been simultaneously fitted by the combinations of
Breit-Wigner and linear functions:

ρfit3He2γ(Q3Heη) = Pη→2γσb + p1Q3Heη + p2, (6.3)

ρfit3He6γ(Q3Heη) = Pη→3π0σb + p3Q3Heη + p4, (6.4)

where σ, p1, p2, p3, and p4 are the fitted parameters (Fig 6.4, 6.5, 6.6, 6.7).

Figure 6.2: The χ2 per degree of freedom values obtained from excitation curves fits for
different bound state widths and peak positions (Fig. 6.4, 6.5, 6.6, 6.7). The χ2/d value
for linear fit (Fig. 6.1) is shown by horizontal line.

The χ2 value is defined by the formula:

χ2(σ, p1, p2, p3, p4) =
∑
i

(
ρmeasured3He2γ,i − ρ

fit
3He2γ(Qi)

∆ρmeasured3He2γ,i

)2 +
∑
i

(
ρmeasured3He6γ,i − ρ

fit
3He6γ(Qi)

∆ρmeasured3He6γ,i

)2, (6.5)
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where the i index denotes sum over all Q3Heη bins (Sec. 4.1) used in current analysis,
Qi means Q3Heη value corresponding to ith bin center, ρmeasured3He2γ,i and ρmeasured3He6γ,i normalized
events counts measured for ith bin, ∆ρmeasured3He2γ,i and ∆ρmeasured3He6γ,i are the statistical uncer-
tainties obtained for ith bin, and ρfit3He2γ(Qi) and ρfit3He6γ(Qi) are the fitting functions from
Eq. 6.3 and 6.4 (Fig. 6.2). The fit algorithm minimizes χ2 value varying the fit parameters
σ, p1, p2, p3, and p4.

If one assumes that χ2 distribution is parabolic near its minimum:

χ2(σ) = (
σ − σfit
∆σ

)2 + χ2(σfit), (6.6)

where σfit denotes the fit parameter value corresponding to the minimum position, and
defines the statistical fit parameter uncertainty as parameter change ∆σ increasing χ2 by
1, the following formula for the statistical uncertainty can be deduced:

∆σstatfit =

√
2

δ2χ2/δσ2
, (6.7)

where δ2χ2/δσ2 is the second χ2 derivative by this parameter, and ∆σstatfit is the fit pa-
rameter’s uncertainty. The statistical uncertainties for p1, p2, p3, and p4 fit parameters
can be obtained by the same formula.

Figure 6.3: The upper limit values obtained based on excitation curves fit assuming
different bound state parameters. The estimation is made with using the statistical un-
certainties corresponding to 90% confidence level.

As far as the bound state peak is not observed, the upper limit for the bound state
forming cross section is determined as fit parameter uncertainty:

σCL=90%
upper (Bs, Γ ) = σfit +∆σCL=90%

fit = σfit + k∆σstatfit , (6.8)
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Figure 6.4: Excitation curves fit using independent linear background shapes for the
reactions and dependent hypothetical bound state contribution taking the branching ratio
into account. Different bound state parameters were used as it is shown in the legend
above the plots. Blue points show the experimental points taken into account, black line
shows the fit result, and the green line shows the background function.
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Figure 6.5: Excitation curves fit using independent linear background shapes for the
reactions and dependent hypothetical bound state contribution taking the branching ratio
into account. Different bound state parameters were used as it is shown in the legend
above the plots. Blue points show the experimental points taken into account, black line
shows the fit result, and the green line shows the background function.
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Figure 6.6: Excitation curves fit using independent linear background shapes for the
reactions and dependent hypothetical bound state contribution taking the branching ratio
into account. Different bound state parameters were used as it is shown in the legend
above the plots. Blue points show the experimental points taken into account, black line
shows the fit result, and the green line shows the background function.
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Figure 6.7: Excitation curves fit using independent linear background shapes for the
reactions and dependent hypothetical bound state contribution taking the branching ratio
into account. Different bound state parameters were used as it is shown in the legend
above the plots. Blue points show the experimental points taken into account, black line
shows the fit result, and the green line shows the background function.
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Figure 6.8: The results of fit performed in order to obtain the upper limit for the bound
state forming cross section. The error bars show amplitude values obtained by fitting
algorithm with statistical uncertainties. The range of possible bound state forming cross
section obtained based on statistical uncertainty corresponding to 90% confidence level
is shown by blue lines. The range of possible bound state forming cross section obtained
based on systematic uncertainty is shown by green lines.

where k is the statistical factor equal to 1.64485 corresponding to 90% confidence level.
The result is shown in Fig. 6.3, 6.8.

There is statistically significant difference between the fit parameter and zero that
is observed if large bound state widths are assumed (Fig. 6.8). However, this difference
cannot be interpreted as bound state observation in current experiment because linear fit
describes the excitation curves obtained in current experiment satisfactorily from statis-
tical point of view. Furthermore, the interval of possible cross section values determined
based on systematic uncertainty contains zero for all range of assumed hypothetical bound
state parameters. All these arguments do not allow to claim that this statistically signif-
icant difference can be interpreted as η-mesic 3He observation.
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6.2 The systematic uncertainties estimation

The parameters contributing into upper limit estimation systematic uncertainty are all pa-
rameters contributing the systematics of luminosity estimation, pd→3He2γ, and pd→3He6γ

reaction analysis. All these parameters are listed in Table. 4.3 and 5.2.
One more source of systematic error is connected with background fit function. The

analysis was performed using linear fit for background. For systematic uncertainty esti-
mation, fit with quadratic background function was used as well (Fig. 6.9).

Figure 6.9: Excitation curves fit using linear (upper panels) and quadratic (lower panels)
background shapes for the hypothetical bound state parameters resulting in the largest
upper limit for the cross section (Fig. 6.3). The fit with quadratic background was per-
formed in order to estimate the systematic uncertainty (Eq. 6.9). The hypothetical bound
state parameters are denoted in the legend above the plots. Blue points show the exper-
imental points taken into account, black line shows the fit, and the green line shows the
background function.

The contribution to systematic originating from the choice of the function to fit the
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background was calculated by the formula:

∆σ
(1)±
fit = |σquadraticfit − σlinearfit |, (6.9)

where σfit means the cross section value obtained from fit and the upper index denotes
the background function chosen for particular fit. The index + or − is selected depending
on if the fit value is increased or decreased by the background polynomial power change.
The component with opposite sign is assumed to be equal to zero.

One more contribution into the systematic error was calculated by varying the fit
ranges by one bin (Fig. 6.10):

∆σ
(2)±
fit = |σleft±fit − σfinalfit |, (6.10)

∆σ
(3)±
fit = |σright±fit − σfinalfit |, (6.11)

where the indices left+ and right+ denote changes of left or right fit range respectively by
one bin that increases the fit result. left− and right− indices denote the fit range changes
that decrease the fit result. If both changes of some fit range result in the same fitted
parameter change direction they are included to one systematic uncertainty component.

The total systematic uncertainty is calculated by the formula

∆σsyst±fit =

√√√√∑
i

|σPi=P
±
i

fit − σfinalfit |2 +
3∑

k=1

(∆σ
(k)±
fit )2, (6.12)

where i index, Pi, and final have the same meaning as in eq. 4.12, 5.18, ∆σ(k)
fit denotes

the uncertainties estimated in Eq. 6.9-6.11, P+
i denotes the change of ith parameter that

increases the fit result, and P−i denotes the parameter change that decreases the result. If
both changes of Pi result in the same fitted parameter change direction they are included
to one systematic uncertainty component.

According to Ref. [91], not all parameters were taken into account but only the ones
fulfilling the condition described below.

For each parameter change, the following magnitude is calculated (Fig. 6.11):

∆(∆σstatfit )
± =

√
|(∆σfinalfit )2 − (∆σchanged±fit )2|, (6.13)

where ∆σfinalfit and ∆σchanged±fit denote the statistical uncertainties for the final result and
changed parameter value respectively. The meaning of + or − indices is the same as in
the equations above. The statistical uncertainties are calculated by Eq. 6.7.

When the parameter changes fulfill the condition:

|σchanged±fit − σfinalfit |
∆(∆σstatfit )

± < 1, (6.14)
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Figure 6.10: Excitation curves fit using normal fit range (upper panels) and changed ones
in order to determine the systematic uncertainty (Eq. 6.10 6.11). The hypothetical bound
state parameters resulting in the largest upper limit for the cross section (Fig. 6.3) are
used for this figure. These parameters are denoted in the legend above the plots. Blue
points show the experimental points taken into account, black line shows the fit, and the
green line shows the background function.
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it is excluded from Eq. 6.12.
For each hypothetical bound state parameters, two values of uncertainties were cal-

culated: ∆σsyst+fit and ∆σsyst−fit . These values allow to assume the range of possible bound
state forming cross section values:

σfinalfit −∆σ
syst−
fit < σ < σfinalfit +∆σsyst+fit . (6.15)

This range is shown in Fig. 6.8 by green lines.

Figure 6.11: Left panel: The changes of fit result for particular values of assumed bound
state parameters caused by varying the parameters taken into account in systematic un-
certainty calculations. The error bars denote the statistical uncertainties. The horizontal
line shown the σfinalfit value. Right panel: The magnitude from Eq. 6.14 denoting the con-
dition applied to the parameters taken into account in systematic uncertainty calculation.
The horizontal line shows the value of 1 used in the condition. The parameter indices
used in this figure are explained in Table. 6.1.
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Index Parameter description
1 Background polynomial power (Eq. 6.9)
2 Left excitation curve fit range (Eq. 6.10)
3 Right excitation curve fit range (Eq. 6.11)
4 Beam momentum correction constant (Eq. 4.10)
5 3He identification cut height (Fig. 4.2, Eq. 4.5)
6 γ energy threshold
7 Time cut (Fig. 5.3, 5.12, left panel)
8 Time cut (Fig. 5.3, 5.12, right panel, left border)
9 Time cut (Fig. 5.3, 5.12, right panel, right border)
10 Cut on θ(

∑
~pγi) (Fig. 5.5, 5.14)

11 3He missing mass cut position (Fig. 5.2, 5.11)
12 γ quanta missing mass cut position (Fig. 5.6, 5.15, left border)
13 γ quanta missing mass cut position (Fig. 5.6, 5.15, right border)
14 Cut on γγ invariant mass corrected by Q3Heη (Fig. 5.7, left border)
15 Cut on γγ invariant mass corrected by Q3Heη (Fig. 5.7, right border)
16 Cut for 3π0 decay identification (Fig. 5.13)
17 Cut on 6 γ quanta invariant mass corrected by Q3Heη (Fig. 5.16, left border)
18 Cut on γ quanta invariant mass corrected by Q3Heη (Fig. 5.16, right border)
19 θ angular cut for 3He tracks (Fig. 4.3, Eq. 4.8)

Table 6.1: The list of parameters contributing into systematic error. The indices given in
the left column correspond to the horizontal coordinates in Fig. 6.11.
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Conclusions and outlook

This dissertation describes the search for 3He−η bound state via the study of pd→3He2γ

and pd →3He6γ reactions. This is the first experiment considering the reaction mecha-
nism with direct decay of the bound η meson. The dissertation contains detailed descrip-
tion of the experiment and the data analysis.

The measurement was performed in 2014 at COSY accelerator in Jülich (Germany)
using WASA-at-COSY detection system. Ramped beam technique was used that al-
lowed to reduce systematic uncertainties. The beam momentum was varied in the range
[1.426; 1.635] MeV

c
corresponding to [−70; 30] MeV range for excess energy of 3He − η

system.
The performed analysis allows to determine the upper limit for 3He− η bound state

formation and decay cross sections. The conditions applied for the events selection are
based on the bound state forming and decay Monte Carlo simulation. η → 2γ and
η → 3π0 decay channels of bound η meson are taken into account.

Total integrated luminosity was obtained based on pd →3Heη reaction in the range
of Q3Heη ∈ [10; 30] MeV and quasielastic proton-proton scattering in the range of
Q3Heη ∈ [−70; 30] MeV . The results are consistent within systematic errors. The excess
energy dependence of luminosity obtained based on quasifree proton-proton scattering
was used for pd→3He2γ and pd→3He6γ excitation curves normalization.

The analysis of the obtained excitation functions for the pd→3Heη indicates slightly
the signal from the bound state for Γ > 20 MeV and B ∈ [0; 15] MeV . However, the
observed indication is in the range of the systematic error. Therefore, the final conclusion
of this thesis is that no narrow structure that could be interpreted as η-mesic nucleus was
observed in both excitation curves.

The obtained excitation curves do not reveal resonance-like structures that could be
interpreted as 3Heη bound state with binding energy less than 60 MeV and width less
than 40MeV . The fit of the excitation curves with combined independent linear functions
and Breit-Wigner distribution multiplied by branching ratios of corresponding η decay
channels allows to determine the upper limit for pd→ (3Heη)bound process assuming that
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the η decay channels branching ratio is not influenced by coupling with 3He nucleus. The
upper limit for the cross section of the bound state forming is varying between 2 and 15 nb

depending on the bound state parameters. This is the first result obtained for the direct
decay of bound η meson. The upper limit is essentially lower than the limit of 70 nb for
pd→ (3Heη)bound →3Heπ0 reaction obtained by COSY-11 Collaboration [56].



Appendix A

η meson properties

η meson was discovered in 1961 [98] and was intensively studied experimentally and
theoretically. According to the Particle Data Group (PDG) the η mass is equal to
547.862 ± 0.017 MeV/c2 and the full width is 1.31 ± 0.05 keV [94]. According to
η meson’s spin J = 0 and odd parity P = −1, it is a pseudoscalar meson. η is a neutral
meson with zero isospin and even charge parity and G-parity.

The most intensive η meson decay channels are shown in the Table. A.1. The decay
probabilities are given according to the PDG [94]. Many η decay channels are energetically
possible but forbidden according to the conservation of C, P, and CP symmetry and are
used for these symmetries test [94,95].

In frame of quark model, the η meson is classified as lightest pseudoscalar mesons
SU(3)-flavor nonet component [99, 100] (Fig. A.1). The η1 and η8 are the flavor singlet
and the flavor octet states respectively:

|η1〉 =
1√
3
(dd̃+ uũ+ ss̃), (A.1)

|η8〉 =
1√
6
(dd̃+ uũ− 2ss̃). (A.2)

Decay modes Probability
Neutral modes (71.91± 0.34)%

2γ (39.41± 0.20)%

3π0 (32.68± 0.23)%

Charged modes (28.10± 0.34)%

π+π−π0 (22.92± 0.28)%

π+π−γ (4.22± 0.08)%

Table A.1: The most intensive η meson decay modes [94].

80



81

Figure A.1: The nonet of pseudoscalar mesons. The axes show isospin third component
(I3) and the strangeness (S). The picture is taken from Ref. [100].

These clean states are not observed but their superpositions:

|η〉 = cos θ |η8〉 − sin θ |η1〉 , (A.3)

|η′〉 = sin θ |η8〉+ cos θ |η1〉 , (A.4)

where θ is the mixing angle equal to about −15o [101,102]. Relatively small mixing angle
value allows to treat η meson as η8 with a small admixture of η1 component. There are
presumptions that η1 component can mix with pure gluonic states that can influence the
properties of η meson embedded in nuclear matter [12, 13].

Short η meson lifetime does not allow to create η beams. Thus, one cannot measure
data about the elastic scattering that makes the theoretical investigations more compli-
cated.

In the low energy region, the dominating η-nucleon interaction mechanism is the ex-
citation of S11 resonance N∗(1535). Its mass is 1535 MeV/c2 and the width is of about
150 MeV [94, 95]. This resonance is strongly coupled to s-wave π − N and η − N chan-
nels [96, 97]. It also decays via ηN , πN , ∆π, γN , ππN channels.



Appendix B

Bound states and resonances in the
scattering theory

The detailed review of bound state description in frame of scattering theory can be found
in Ref. [34].

Applying the perturbative approach, the scattering theory determines the scattering
operator transforming initial state wave function into the final state:

|Ψfinal〉 = Ŝ |Ψinitial〉 . (B.1)

This operator is analytic, unitary, time reversal symmetric, and Lorentz invariant [103,
104]. These properties allow to represent it as scattering matrix expanding the wave
functions in a basis of orthonormal states:

|Ψfinal〉 =
∑
f,i

|f〉Sfi 〈i| |Ψinitial〉 , (B.2)

where Sfi is the scattering matrix element defined as 〈f | Ŝ |i〉.
For spinless particles, in angular momentum basis, the scattering matrix is diagonal

and depends on relative momentum p:

Sll′(p) = Sl(p)δ(l − l′), (B.3)

where l denotes the angular momentum of the system, δ(l − l′) is the Kronecker delta,
and Sl is defined by the following formula:

Sl(p) = e2iδl(p), (B.4)

where δl(p) is the phase shift. Thus, in the unit system where ~ = 1, the scattering
amplitude can be defined as [104]:

fl =
Sl − 1

2ip
=

1

p cot(δl)− ip
. (B.5)
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For l = 0, the phase shift can be approximated by the formula [104]:

p cot(δ0) = −
1

a
+
r0p

2

2
, (B.6)

where a is the scattering length and r0 is the effective scattering potential range. There
are different conventions about the sign before the first term in Eq. B.6 defining the
scattering length. In this thesis, the convention with minus sign before the first term of
this expression is used.

In case of small momentum one can neglect the second term of Eq. B.6 and write the
scattering amplitude as:

f0 =
1

− 1
a
− ip

=
a

−1− iap
. (B.7)

When inelastic channels are also open, the scattering length appears as a complex
magnitude. Because of the scattering matrix unitarity, the imaginary part of scattering
length is positive. The bound state existing requires [105] a condition:

|<a| > =a, (B.8)

where the symbols < and = mean the real and imaginary part of a complex number,
correspondingly. This is necessary condition but it is not enough to conclude that the
bound state exists.

One of powerful techniques in scattering theory is generalizing the scattering matrix
in the complex momentum plane [104]. In this approach the matrix elements Sl(p) are
treated as analytic complex momentum functions. The analytical properties of scattering
matrix elements depend on interaction potential, especially on its asymptotic behavior.
If the potential exponentially decreases in r →∞ and is an analytic function for complex
argument <r > 0, then the scattering matrix is analytic at the whole complex plain except
maybe a finite number of points (poles) [104]. If the interaction potential is a real function
(no absorption channels) then the poles can be either on the imaginary axis (<p = 0) or
on the lower half plane (=p < 0) [107]. Poles laying at =p > 0 correspond to bound states
and poles laying at =p < 0 correspond to resonances. However, poles located far from
real axis (=p = 0) and not leading to observable resonances can exist.

The simplest form of the scattering matrix with a pole corresponding to a bound state
is [104]:

S0 =
−p− ip0
p− ip0

, (B.9)

where ip0 is the pole position (p0 > 0). For this scattering matrix, the scattering amplitude
is the following [104]:

f0 =
1

−p0 − ip
. (B.10)

The similarity of Eq. B.7 and B.10 points at the connection between the scattering
length and the pole position:

p0 =
1

a
. (B.11)
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In case when the scattering length is much larger than the potential range, one can
determine the binding energy [104]:

−Ebound =
p20
2m

=
1

2ma2
, (B.12)

where m is the reduced mass.
In case when the interaction potential contains an imaginary part (inelastic channels

are also taken into account), the situation is more complicated. The poles positions are
shifted [107,108] like it is shown on Fig. B.1.

Figure B.1: The scheme showing the scattering matrix poles movement when increasing
the imaginary part of interaction potential. The picture was taken from [34].

The scattering length can be measured in experiments studying low momentum elastic
scattering. It can also be determined on the basis of final state interaction (FSI) between
produced particles. Bound states or resonances can be observed as a change in S(p) phase
or as a peak in the cross section as a function of energy.



List of Abbreviations

• FSI Final State Interaction

• QCD Quantum Chromodynamics

• QMC quark-meson-coupling

• COSY Cooler Synchrotron

• CD Central Detector

• WASA Wide Angle Shower Aparatus

• MDC Mini Drift Chamber

• PSB Plastic Scintillator Barrel

• SEC Scintillation Electromagnetic Calorimeter

• FD Forward Detector

• FWC Forward Window Counter

• FPC Forward Proportional Chamber

• FTH Forward Trigger Hodoscope

• FRH Forward Range Hodoscope

• DAQ Data Acquisition

• FPGA Field-Programmable Gate Array

• QDC Charge-to-Digital Converter

• TDC Time-to-Digital Converter

• FIFO First In First Out
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