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Abstract: In positron emission tomography (PET) studies, convolutional neural networks (CNNs)
may be applied directly to the reconstructed distribution of radioactive tracers injected into the pa-
tient’s body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in
tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as
a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear
transformation at the feature engineering stage and then uses principal component analysis to create
the images. We apply the proposed methodology to the classification of simulated PET coincidence
events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of
neural network architectures, including multilayer perceptron and convolutional networks, were con-
ducted. The developed method increased the initial number of features from 6 to 209 and gave the
best precision results (79.8%) for all tested neural network architectures; it also showed the smallest
decrease when changing the test data to another phantom.
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1. Introduction

In the majority of machine learning methods, e.g., the multilayer perceptron (MLP), input data are
unstructured and altogether represented in the form of 1-dimensional (1-D) feature vectors. The per-
formance of classification techniques is therefore highly dependent on pre-processing steps, i.e., the
feature extraction or feature selection. On the other hand, in deep learning, particularly the convolu-
tional neural networks (CNNs), the features are learned automatically and represented hierarchically at
subsequent levels [1, 2]. Since convolutional units analyze only a small subset of the output data from
the preceding layer, the network may be much deeper with fewer parameters [3]. Recent advances
in CNNs have presented an opportunity for solving classification problems in many disciplines [4–8].
Most of these methods are either applied to 1-D vectors or 2-D matrices as inputs to the CNN. Greater
dimensionality of input images (e.g., 3-D) requires much larger GPU memory consumption. For this
reason, a few methods have been developed to reduce the dimensionality of the data to decrease com-
putational costs [9, 10].

In the case of the positron emission tomography (PET) [11–13], CNNs may be applied directly to
the distribution of a radioactive tracer injected into the patient’s body, as a pattern recognition tool.
However, much PET data are provided as 1-D vectors, and this brings questions of whether CNNs can
be effectively trained on them. Examples of such tasks are an estimation of time of flight from signals
registered in scintillators [14] and classfication of coincidence events acquired by PET scanners [15].

The first approach to the transformation of non-image data into an image form for CNN architec-
tures was presented in Ref. [16]. The method, called DeepInsight, constructs an image by placing
the similar elements of 1-D input vectors together and the dissimilar ones further apart, thus enabling
collective use of neighboring elements. Arrangement of the features on the 2-D image space is crucial
to exploring their relative importance and correlation. But, the toughest problem of visualization of the
input space in the image form is determining how to represent low-dimensional input data as matrices
with a large number of pixels that can be efficiently treated by a CNN. This problem is tackled in this
paper. We propose a method to increase the size of a 1-D vector. Namely, if one has only a small
number of features for a data point, then we introduce a method to involve higher-order correlations
of features. Those are arranged with the DeepInsight methodology [16] to a 2-D image for further
processing by CNN architectures. We investigate the quality of the proposed approach by considering
the problem of coincidence event classification in the Jagiellonian PET (J-PET) detector [17–23].

PET studies rely on the determination of the spatial distribution of the concentration of a selected
substance in the body, and in some cases, also its kinetics, i.e., dependence of these distributions on
time [24, 25]. For this purpose, the patient is administered a radiopharmaceutical, i.e., a pharmaceuti-
cal containing a radioactive isotope. Tomography uses the fact that the positrons emitted from the β+

radioactive marker and electrons from the patient’s atoms are annihilated, resulting in two γ photons
being emitted back-to-back. The PET detection system is usually arranged in layers, forming a ring
around the diagnosed patient [26]. In the basic measurement scheme, information about the single
event of the electron-positron annihilation is collected in the form of a line joining the detected loca-
tions that passes directly through the point of annihilation, called the line of response (LOR). The set
of registered LORs forms the basis for PET image reconstruction.
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During the measurement, an event is regarded as valid if two γ photons are registered within a pre-
selected coincidence time window and the energy deposited in scintillators by both γ photons exceeds
the predefined level. Nonetheless, a number of acquired coincidences having met the above criteria
are still spurious events and are unwanted. Different types of events in a routine PET examination are
usually classified as follows:

• True: Two γ photons originate from a single positron-electron annihilation and reach the scintil-
lators without prior scattering.
• Phantom-scattered: Two γ photons originate from a single positron-electron annihilation when

one or both of them have undergone Compton interactions in the patient.
• Detector-scattered: Two γ photons originate from a single positron-electron annihilation with one

or both of them undergoing a Compton interaction(s) inside the detector, before being registered.
• Random: Two γ photons originate from two different positron-electron annihilations occurring

within the coincidence time window.

Only the true events are useful for PET imaging. The random and scattered ones distort the recon-
structed distribution of the radiotracer and constitute a background. A variety of methods are known for
estimation of the contribution of random, scattered and true events during a PET examination [27–29].
This paper is not dedicated to background corrections, but to the event classification scheme for the
preselection of the true events using a deep learning approach.

2. Data and methods

2.1. PET data description

We assume that each event is described by the following six features and thus represents a point in
6-D space:

1. The angular difference in the transaxial section between the detection points.
2. The absolute value of the registration time difference of two γ photons.
3. The distance between the reconstructed positions in the scintillators of both γ photons.
4. The sum of energies deposited by both γ photons in the scintillators.
5. The absolute value of the difference of energies deposited by both γ photons in the scintillators.
6. The attenuation coefficient along each LOR extracted based on the attenuation map of the phan-

tom, e−x/l, where x stands for the actual distance traveled by a photon, and l for its mean-free path
in matter.

2.2. Transformation of non-image data into an image

We follow the idea presented in Ref. [16] and apply the training data to find the location of features
in the 2-D space. Consider data stored in the matrix X ∈ RL×N , where L is the number of collected
events and N stands for the number of features. The data matrix may be expressed as

X = [x1|x2|...|xN], (2.1)

where each feature vector x j consists of L training samples. In order to distinguish the column vectors
denoted by x j ∈ R

L from the row vectors of matrix X describing the ith event, the latter ones will be
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denoted by an upper index xi ∈ RN . In the DeepInsight approach [16], the dimensionality reduction
methods, e.g., t-SNE [30] or kernel principal component analysis (PCA) [31], are applied to the data
matrix X in order to obtain the feature positions in the 2-D plane.

In kernel PCA, we consider a function Φ that maps the original vector into a new space Ω, finite
or infinite, i.e., each feature x j ∈ R

L is projected to a point Φ(xj), and these points build up the matrix
Φ(X) of larger dimensionality than X. We assume that the mean value of the data set Φ(X) is 0, i.e.,∑N

j=1Φ(xj) = 0. It may be shown that the standard PCA problem of finding eigenvalues (Λ) and a
matrix built from eigenvectors (A) of the covariance matrix

C =
1
N
·Φ(X) ·Φ(X)T , (2.2)

in the form
Λ = A · C · AT , (2.3)

may be replaced by the problem of diagonalization of the N × N kernel matrix B

Λ =
1
N
· V · B · VT , (2.4)

where the kernel reads as
B = Φ(X)T ·Φ(X), (2.5)

and A = V ·Φ(X)T (cf. ref. [31]). As it is seen from Eq. (2.4), V stores the eigenvectors of the matrix
B/N, which is the kernel matrix B normalized by the number of features (N). The application of a
kernel matrix has a number of advantages. First of all, the compact representationΦ(Y) of each vector
from the data matrix X may be evaluated based on the following:

Φ(Y) = A ·Φ(X)
= V ·Φ(X)T ·Φ(X)
= V · B, (2.6)

where the functionΦ is never explicitly used [32–34]. The technique to replace the dot product by the
kernel matrix B in Eq. (2.5) is called the ”kernel trick”.

In DeepInsight, two eigenvectors v1 and v2, respectively corresponding to the largest eigenvalues λ1

and λ2, are used to present the features as points on a 2-D plane. In this approach, it is proposed to use
the nonlinear function Φ(xj) representing the transformation of each feature j from the sample space,
i.e., each element of the kernel matrix in Eq. (2.5) is constructed as follows:

Bi, j = Φ(xi)T ·Φ(xj). (2.7)

Nonlinear mappings of feature space provide much more efficient tools for event classification as com-
pared to linear ones. These are ensured by the flexibility of the classification criteria, enlarged dimen-
sionality of the feature space and better exploitation of the correlations between features. These aspects
are especially important when the feature space dimensionality (N) is very small. For this particular
case, we propose the DeepInsight ”modified” process.
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2.3. DeepInsight ”modified”

First of all, we impose that the nonlinear function Φ has a finite support and

Φ : RN → RM. (2.8)

The new representation
Z = [z1|z2|...|zM] (2.9)

is obtained, where Z is the L × M matrix and

zi = Φ(xi) ∈ RM (2.10)

for i = 1, 2, ..., L. After subtraction of the mean value from data set Z, i.e., after requiring
∑M

j=1 z j = 0,
the standard procedure of diagonalization of the kernel matrix B is performed (see Eq. (2.4) for details).
The only difference at this stage is that the simple dot product is used (nonlinearity was applied in
Eq. (2.10)) and the M × M kernel matrix is defined as

B = ZT · Z. (2.11)

Finally, n eigenvectors v1, .., vn corresponding to the n largest eigenvalues are used to present the po-
sitions of M features in the n-D image space. The values of each element of the ith event, zi, are
calculated explicitly according to the definition of the function Φ. In this work, we will consider only
the polynomial functions. For the polynomial of degree d, the number of dimensions M in a new space
is given by

M =
(N + d)!

N! d!
− 1, (2.12)

and, for a fixed number of features, N is a strongly increasing function of d. For instance, for N = 2,
one has

xi = [xi
1, x

i
2], (2.13)

and, for d = 3, the new space is 9-dimensional and

zi = Φ(xi)
= [xi

1, xi
2, xi

1 · x
i
2, (xi

1)2, (xi
2)2, (xi

1)2 · xi
2, xi

1 · (xi
2)2, (xi

1)3, (xi
2)3]. (2.14)

Points in the Cartesian space spanned by the eigenvectors v1 to vn define only the location of fea-
tures and not their values. The feature locations in the Cartesian coordinates are determined by their
similarity. Feature values will be visible as the image intensity in a given location. Same as in the
DeepInsight method, we define the final image as the rectangular convex hull of all features, framed in
a horizontal or vertical direction. The transformation process for six feature vectors to an input image
for CNN is shown in Figure 1.

For a detailed description of the DeepInsight pipeline, we refer the reader to Ref. [16]. Hereafter,
we will refer to the original DeepInsight method as DeepInsight ’raw’, and to the proposed approach
as DeepInsight ’modified’.

Our results present an extension of the method that enables its application to new fields. Unlike
DeepInsight, which employs an implicit nonlinear transformation using a kernel trick, our approach
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Figure 1. An illustration of transformation from feature vectors to a CNN input image.

explicitly expands the dimensions of the input data, allowing us to control an effective number of vari-
ables. This puts under supervision also the number of non-zero pixels and an image size, thus enabling
optimization of the computational effort. All of this broadens the scope of the method from data of
high dimensionality to data from detectors providing data of high granularity but low dimensionality,
such as the J-PET.

2.4. CNN architectures

Figure 2. CNN architecture used in DeepInsight for the classification problem.

Once a 1-D vector that stores the information about features, which, in our case, describes the coin-
cidence event, is transformed into a n-D matrix, it can be further processed to the CNN. The research
has focused on the DeepInsight method and optimization of a single-path convolutional network.

DeepInsight CNN architecture consists of two parallel CNN architectures, where each consists
of four convolutional layers and three layers designed to reduce dimensionality, called max pooling
layers (see Figure 2). Each parallel convolutional ”pathway” has a different filter size to focus on
different areas of an image. Each convolutional layer is followed by a batch normalization layer and
a rectified linear unit (ReLU) layer. Batch normalization layers are used to speed up the training of
the CNN and prevent overfitting through normalization by recentering and rescaling each data batch.
The max pooling layers are used to reduce the dimensionality. This enables to reduction of the number
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of parameters, thus preventing overfitting and decreasing the training time. The ReLU is the most
commonly used nonlinear activation function in CNNs. The major benefits are a reduction of the
likelihood of a vanishing gradient and computational efficiency. The outputs of the fourth convolutional
layers are later fused in the last fully connected layer. The last layer is called the softmax classifier and
calculates the probabilities of class labels.

CNN architecture hyperparameters, such as the size of filters, initial number of filters, momentum
value, L2 regularization value and initial learning rate, were optimized by using Bayesian optimization,
with the aim being to find the model hyperparameters that yield the best score on the validation data.
The biggest advantage, compared to the random or grid search, is that the past evaluations have an
impact on the future ones. The algorithm spends time on selecting the next hyperparameters in order
to make fewer evaluations. Bayesian optimization is one of the most effective techniques in terms of
the number of function evaluations required [35].

2.5. Simulation scenario

The performance of the proposed classification scheme was investigated based on Monte Carlo sim-
ulation studies, where exact information about all four types of events, i.e., true, phantom-scattered,
detector-scattered and random, is available. The Geant4 Application for Tomographic Emission
(GATE) [36, 37] is open-source software for numerical simulations in the areas of medical imag-
ing and radiotherapy. The J-PET scanner geometry, as shown in Figure 3, was implemented in GATE.
The 2-layer detector consists of seven rings, and each ring is composed of 24 cylindrically arranged
modules. Each module was built from 32 plastic scintillator strips (16 strips per layer) with a width
of 30 mm and length of 330 mm. The gap length between adjoining rings is 20 mm. The detector
is a cylinder with a radius of 415 mm. The simulation setup was consistent with the one used in our
previous works [38].

Figure 3. Schematic view of simulated J-PET scanner.

The investigated sources of radiation were the NEMA IEC phantom [39] and XCAT phantom [40].
The NEMA IEC phantom and XCAT phantom activity maps are depicted in Figure 4 and Figure 5,
respectively.

A coincidence event was defined as a set of consecutive interactions of photons detected within
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Figure 4. Activity distribution of the NEMA IEC phantom superimposed on the computed
tomography (CT) image. Figure taken from [38].

Figure 5. Activity distribution of the XCAT phantom superimposed on the CT image. Figure
taken from [38].

the fixed time window of 3 ns. The data set was reduced in order to reject events from outside of
the detector field of view. Two selection criteria were employed for each of the phantoms. The first
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criterion ensured that the reconstructed position of the annihilation point within the (x, y) cross-section
was confined to a circular region with a radius of 30 cm for the NEMA IEC phantom, and 40 cm for
the XCAT phantom. The second criterion restricted the reconstructed position along the axial direction
to be within 20 cm from the center of the detector for the NEMA IEC phantom, and 100 cm from the
center of the detector for the XCAT phantom. Moreover, only events with exactly two interactions
registered with an energy loss larger than 200 keV each were accepted [41]. For the NEMA IEC
phantom simulation, a total of 6.5 million coincidences that fulfill above conditions were recorded,
corresponding approximately to a five-minute scan for a real J-PET data acquisition. The total number
of events included 3.9 million trues, 2.0 million phantom-scattered, 0.1 million detector-scattered and
0.5 million randoms.

For the XCAT phantom simulation, a total of 8.6 million coincident events fulfilling the conditions
were recorded—-likewise corresponding to an approximately five-minute scan. The total number of
events included 4.3 million trues, 2.2 million phantom-scattered, 0.1 million detector-scattered and 2.0
million randoms.

(a)

(b)

Figure 6. Distribution of attenuation coefficients for each class of events.

Before event classification using the CNN, this data set was reduced in order to reject events from
outside of the phantom. Figure 6 shows the distribution of the attenuation coefficients for both phan-
toms. The shift of the distribution toward small values for the XCAT phantom was caused by the
difference in the geometry of the phantoms. The influence of the phantom geometry is best seen in the
example of the distribution of phantom-scattered events; particularly the greater share of events with
an attenuation factor close to 1 for the NEMA IEC phantom is due to the fact that it is several times
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smaller than XCAT, which means that there are more LORs that do not pass through the phantom. A
threshold on the attenuation factor was applied: events whereby the factor was greater than 0.999 were
rejected (Table. 1). Consequently, for the NEMA IEC phantom, the initial total number of 6.5 million
coincidence events was reduced to 5.1 million. For the XCAT phantom, the initial total number of 8.6
million coincident events was reduced to 6.6 million. Note that the number of true coincidences re-
mained intact. More details about the pre-processing of the J-PET data may be found in Refs. [42,43].

Table 1. Event-type distribution (data in millions)

Phantom True
Phantom
Scattered

Detector
Scattered

Random

NEMA IEC
Pre-cut 3.9 2.0 0.1 0.5
After cut 3.9 0.9 0.1 0.2

XCAT
Pre-cut 4.3 2.2 0.1 2.0
After cut 4.3 1.4 0.1 0.8

2.6. Quality measures

As mentioned in the previous section, the acquired data set consists of four types of coincidence
events: true, phantom-scattered, detector-scattered and random. We consider both scattered and ran-
dom events as negative instances, while the true events are positive ones. In order to measure the
quality of classfication, we calculated two parameters: the true positive rate (TPR) and positive predic-
tive value (PPV). The TPR and PPV measure sensitivity and precision of the classfication, respectively,
and are defined as

TPR =
True Positive

True Positive + False Negative
, (2.15)

PPV =
True Positive

True Positive + False Positive
. (2.16)

The goal of the event selection is to maximize the classification precision (PPV) for assumed sensitivity
(TPR) equal to 0.95, where each true coincidence rejected is associated with long-term exposure of the
patient; therefore, loss of true signals should be limited and a level of 5% is still acceptable.

Since, in the proposed vector transformation scheme, the initial number of features increases from
N to M, where M − N features are naturally correlated with the original N features (cf. Eqs. (2.13)
and (2.14) for details) an additional parameter that measures the feature overlapping (FO) is required.
The FO indicates the fraction of the features that contribute to the same pixel in the output image.
If no overlapping is observed, each feature corresponds to an individual pixel and FO is equal to 0.
Moreover, we calculate the explained information (EI) parameter in order to estimate the percentage
of variance explained by the first n most significant eigenvectors. The parameter EI is defined as

EI =
λ1 + ... + λn

Tr (Λ)
, (2.17)

where Tr (Λ) is the trace of the diagonal eigenvalue matrix Λ. From Eq. (2.17), it is seen that 2/M ≤
EI ≤ 1. The closer the value of EI to 1, the higher the compressibility of the feature space on the plane
of the n most significant eigenvectors.
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2.7. CNN training

The selection of training subset size was made by taking into account two criteria. First, the subset
had to be a representative sample; for this purpose, the distributions of each feature were examined
depending on the size of the selected training subset size. Second, the amount of training data has
an impact on the training time; in this work, we set the upper time limit to 72 hours. The selected
size of 30 thousand met both criteria, and the training time lasts 55 hours. The order of coincidences
was randomized before training. The mini-batch size used in the stochastic gradient descent with
momentum was 128 coincidences. Training was performed using the MATLAB 2019b Deep Learning
Toolbox and 2x Tesla K80 GPU (24GB VRAM). Each hyperparameter optimization process took 30
epochs, and each CNN training took 300 epochs. Data were split in proportions of 9:1 (training to
validation). We obtained a set of hyperparameters that gave the best performance on the validation
set. A set of 100 thousand randomly chosen coincidences, without overlapping with the training and
validation set, were used to evaluate the trained CNNs. The test set of coincidences was passed through
trained CNNs to predict each class.

3. Results and discussion

3.1. Transformation of non-image data using kernel PCA

Experiments on the transformation of J-PET data using kernel PCA were performed using the
NEMA IEC phantom.

In the original DeepInsight work [16], the number of image dimensions is fixed and equal to 2.
We have conducted research on the effect of the number of dimensions on the amount of learnable
parameters and efficiency of classification. Results in Table 2 show the values of the EI parameter
according to the dimensionality of the data. Intuitively, the larger the dimensionality, the larger the EI
parameter. Additionally, the number of learnable parameters increases by 1.5 orders of magnitude for
an increase of dimension by 1.

Table 2. Effects of dimensionality of input images

Dimensionality EI Learnable parameters PPV at 0.95 TPR

1 60.2% 0.5 M 78.2%
2 78.6% 11 M 79.8%
3 82.1% 312 M -

Experiments have shown that the classification efficiency (PPV at TPR = 0.95) of 2-D images is
greater than that of 1-D images, i.e., 79.8% and 78.2%, respectively (3-D images have not been tested
due to excessive GPU utilization—the number of learnable parameters for 3-D images was too large).
Therefore, further studies were carried out on 2-D images.

The default input image size for the DeepInsight method is 120×120. We conducted research on
the effect of image size on the classification effectiveness. The DeepInsight ’raw’ results in Figure 7
show that the PPV starts to decrease for an image size smaller than 30×30. However, the smaller the
image size, the faster the learning process; therefore, the size of 30×30 was selected as optimal for the
following experiments. We examined the effect of image size for DeepInsight ’modified’; the size of
30×30 was also optimal.
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As mentioned in Section 2.1, each event is described by six features and is treated as the 1-D vector.
The first investigation is concerned with the analysis of the quality of vector transformation into images.
For this purpose, we chose to apply the parameters FO and EI that were introduced in Section 2.6.

In the proposed approach, introduced in Section 2.2, the initial number of six features is increased
by using the nonlinear mapping Φ with finite support.

Figure 7. Comparison of PPVs at TPR = 0.95 for different sizes of input images for DeepIn-
sight ’raw’.

In this work, we applied the polynomial function and carried out experiments for different polyno-
mial degrees (d) from 1 to 5. In each case, the input data set X was mapped into the new representation
Z as shown in Eq. (2.9). Next, the kernel matrix B was evaluated according to Eq. (2.11). Finally,
the eigenvalues (Λ) and the eigenvectors (V) of the kernel matrix were calculated and stored. The
two most significant eigenvectors v1 and v2, i.e., eigenvectors corresponding to the largest eigenvalues,
were used to localize new features on the 2-D plane.

(a) (b)

Figure 8. The quality of the transformation of 6-D feature vectors into images using the
proposed methodology by optimizing the (a) FO and (b) EI. The calculations were performed
for the polynomial function Φ (see Eq. (2.10)) with degrees from 1 to 5.

Mathematical Biosciences and Engineering Volume 20, Issue 8, 14938–14958.
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Table 3. FO and EI vs the degree of the polynomial

Degree number No. features No. non-zero pixels FO EI

1 6 6 0% 75%
2 27 26 4% 76%
3 83 62 25% 77%
4 209 99 53% 75%
5 461 109 75% 72%

The curves describing the FO and EI parameters as functions of the polynomial degree are shown
in the left and right panels in Figure 8, respectively. From Figure 8, one can see that the features start
to overlap, i.e., FO exceeds a low percentage, for polynomials of the second degree. In addition, for
the third-degree polynomial, the EI parameter reaches maximum at the level of 77%. We selected the
function Φ with polynomials of degree four for further analysis; the EI is only slightly smaller than
the maximal value (EI = 75%), and the FO is 53%; but, compared to a third-degree polynomial, the
number of non-zero pixels has increased by more than 50 %, and FO has increased twice (cf. Table 3).

In this context, it is worth characterizing the original transformation of 1-D vectors into images
introduced by the DeepInsight authors [16]. Since, in this case, the final number of features is the
same as the initial one and equal to N, the images contained only six non-zero pixels that stored the
information about coincidence events (see top panels in Figure 9). The non-zero pixels were sparsely
distributed inside the image and no overlapping is observed (FO = 0). We applied the Gaussian kernel
(Eq. (2.5)) during the evaluations with the original DeepInsight methodology and we optimized the
parameters of the kernel, i.e., the standard deviation of the Gaussian function, as described in the
documentation [16]. For the optimal width of the Gaussian function, EI is equal to 72% and is slightly
smaller than in our proposed approach. In Figure 9, the two exemplary images of two coincidence
event types are shown. The results of processing using original DeepInsight methodology with the
standard kernel PCA transform with an optimal size of Gaussian kernel are demonstrated in the top
panels of Figure 9. Images obtained using the proposed approach with the fourth-degree polynomial
mapping of six features are presented in the bottom panels of Figure 9. According to Eq. (2.12),
the final number of the nonlinear combination of features in the proposed transformation scheme is
M = 209. However, in the case of 110 features, the contribution to the same pixel is observed and,
effectively, 99 pixels stored the information about each coincidence event. It can be seen that these
99 features are uniformly distributed in the image space. In Figure 9, the same true (left panels) and
random (right panels) coincidence events are shown, and the values of the features, i.e., colors in the
image, allow one to distinguish between the types of coincidences for both processing schemes.

3.2. Events classification comparative studies

Figure 10 shows the PPVs obtained for each of the neural network architectures considered in this
work. The error bars indicate standard deviations and were estimated as the square root of measured
numbers for Poisson data. Several configurations of the single-path CNNs were compared. Each of
the CNNs consists of an input layer, several convolutional layers, a fully connected layer, a softmax
layer and a classification layer. The analyzed architectures consist of 3–9 convolutional layers. CNN
hyperparameters for single-path architectures, such as the initial number of filters, the size of filters,
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(a) (b)

(c) (d)

Figure 9. Two exemplary images (30×30) of different coincidence event types. Data were
processed using DeepInsight ’raw’ (top) and DeepInsight ’modified’ with 4th-degree polyno-
mial mapping of six features (bottom). The same true (left) and random (right) coincidence
events are shown for both processing schemes.

initial learning rate, momentum value and L2 regularization, were optimized, similar to the DeepInsight
methods, by Bayesian optimization. An increase in the efficiency of the classification can be observed
along, with the rise of the number of convolutional layers in the range of three to six. The best results
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Figure 10. Comparison of PPVs at TPR = 0.95 for all neural network configurations.

for a single-path network were obtained for the architecture with six layers. A slight decrease in PPV
for more than six layers suggests that the model is too complex and exhibits overfitting.

The best PPVs were given by the DeepInsight ’modified’ method. In general, for CNNs, single-path
architectures provide smaller PPVs than the double-path ones (DeepInsight).

DeepInsight ’modified’ obtained better PPV results than DeepInsight ’raw’. The experiments were
carried out on 30×30 images; for DeepInsight ’raw’, reducing the size of the images also improved
the classification performance. As a consequence of increasing the number of variables (DeepInsight
’modified’), and thus increasing the number of non-zero pixels in the images, better PPV results were
obtained across virtually the entire TPR range (Figure 11).

Figure 11. Comparison of PPV as a function of TPR for ’raw’ DeepInsight and ’modified’
DeepInsight methods.

Comparative experiments with an MLP were also carried out [44]. MLPs are widely used in classi-
fication applications in many fields [45]. It is commonly used as a supervised classifier, including the
data which are not linearly separable [46]. The optimal network had two hidden layers with 50 neurons
each. The MLP ”raw” architecture refers to raw data input, i.e., tabular data consisting of six variables,
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and the MLP ”modified” architecture refers to modified data input, i.e., tabular data with polynomial
mapping (Figure 10). As for the DeepInsight method, increasing the number of variables increased the
PPV. The feature engineering step had a greater impact on the PPV increase in the CNN than in the
MLP-CNN, which, based on the images, finds correlations between features more effectively.

Subsequently, experiments were carried out to show the precision of the optimized model when
tested on data from a different phantom than the training data.

Table 4. Comparison of method precision for different configurations: training vs. test model

Method
Precision [%] Precision loss

- average [%]Training
model

NEMA
IEC XCAT

Test
model

NEMA
IEC XCAT NEMA

IEC XCAT

DeepInsight
”modified” 79.8 66.3 77.8 69.7 2.7

MLP
”modified” 79.3 65.7 76.6 69.6 3.4

The average precision loss was calculated as the mean PPV decrease for the same test set tested
on models trained on different phantom data (Table 4). The advantage of the DeepInsight ”modified”
model is the lower decrease in precision when testing on data from a different phantom than the training
data, as compared to the MLP model. Additionally, the PPV obtained for the DeepInsight ”modified”
method was higher for all training phantom / testing phantom combinations.

4. Conclusions

The goal of this study was to develop a methodology for the transformation of 1-D data vectors
into n-D matrices. These matrices are suitable for further analysis using tools for images with large
numbers of pixels. In particular, the problem of processing 1-D vectors with a small number of features
as compared to the number of pixels in the output images is discussed.

The proposed method, based on the DeepInsight methodology, was applied to the problem of the
classification of PET coincidence events. Unlike DeepInsight, which employs an implicit nonlinear
transformation through a kernel trick, our approach introduces a unique explicit nonlinear transfor-
mation. This transformation explicitly increases the dimensionality of the input data, resulting in a
noticeable expansion of the points within the plane defined by the first two principal components. In
the experimental section, it was shown that classification precision improved after the introduced mod-
ification of the general DeepInsight methodology. Increasing the number of features by using the 4th-
degree polynomial mapping enhanced the classification performance. The PPV obtained by DeepIn-
sight ”modified” (0.798) improved by 0.9 percentage points relative to DeepInsight ”raw” (0.789), by
0.5 percentage points relative to MLP ”modified” (0.793) and by 2.0 percentage points relative to the
single-path architecture (0.778).

The proposed method was tested on two different phantoms, i.e., NEMA IEC and XCAT. The
results comparing the precision of models for each phantom show the universality of this method. The
method was validated through comprehensive testing on multiple neural network architectures, with
the DeepInsight CNN serving as a benchmark. The results demonstrate the superiority and improved
performance of our method, showcasing its novelty and potential impact in the field. The clear value
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added to DeepInsight by our work is an extension of the method to data obtained from instruments
providing a limited number of features, such as reconstructed data from J-PET.

There are two major limitations of this study that could be addressed in future research. First, the
developed method was designed to be applied to low-dimensional data. It is believed that the original
method is more suitable for high-dimensional data; however, this approach is planned to be evaluated
in supplementary studies. Second, further experiments should focus on optimizing the code to enable
analysis for 3-D images. The results (Table 2) showed that the information stored in such images is
greater than in 2-D images. Therefore, an increase in the efficiency of classification in the analysis of
3-D images can be expected.
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42. M. Pawlik-Niedźwiecka, S. Niedźwiecki, D. Alfs, P. Bialas, C. Curceanu, E. Czerwiński, et al.,
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