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Abstra
tInvestigations of the time interval distributions between the de
aysof quantum entangled neutral kaonsSin
e their dis
overy, kaons have unabatedly attra
ted interest of parti
le physi
s resear
hers.As the lightest �avoured parti
les, they o�er an ex
ellent possibility of testing dis
rete symme-tries. KLOE experiment at DAΦNE fa
ility in Fras
ati (Italy) stands out among others. Itallows to rea
h in
omparable pre
ision in CPT symmetry and quantum me
hani
s tests.KLOE owes its uniqueness to the fa
t that DAΦNE produ
es neutral kaons in quantumentangled pairs. In this work a detailed derivation of formulae for double de
ay rate from theinitial two kaons state is presented. The results are then applied to spe
i�
 �nal states. Emphasisis given to 
onne
tion between the de
ay intensities and symmetries.Although there has been no eviden
e of CPT symmetry breaking, several parameterisationshave been proposed where this symmetry is not fundamental and thus 
an be violated. Oneof these ideas is the CPT noninvarian
e due to evolution of pure into mixed states indu
edby quantum gravity e�e
ts, whi
h at the same time happens to be in
onsistent with quantumme
hani
s. This 
on
ept is shortly presented.A subset of KLOE data is analysed for the symptoms of de
oheren
e 
aused by the afore-mentioned me
hanism. For reasons referred to in the text the results obtained in this work areless signi�
ant than those from KLOE analysis, nonetheless their orders of magnitude indi
atethe expedien
y of further measurements.
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1 Introdu
tionKaons (also 
alled K mesons) are the lightest parti
les 
ontaining a strange quark, s, apart from themost 
ommon quarks u (up) or d (down), and for this reason their potential for testing fundamentalphysi
s laws was realised almost from the moment of their dis
overy. The behaviour of 
harged kaonsserved as an inspiration for Lee and Yang to propose experiments testing parity 
onservation [1℄. Neutralkaons were parti
les for whi
h CP [2℄ and T [3℄ violations were �rst observed. Then it should not 
omeas a surprise that they are promising 
andidates in the sear
h of CPT noninvarian
e.
CPT symmetry is a 
ombination of three dis
rete symmetries: P− parity, C− 
harge 
onjugationand T− time reversal, and although P , C and T have all been shown to be violated individually, CPTsymmetry seems to remain inta
t. It was shown by Pauli [4℄ to hold for any quantum �eld theory andfor any order of the C, P and T transformations under very basi
 assumptions: Lorentz invarian
e,unitarity (
onservation of probability) and lo
ality. There was an earlier, but less general proof byLüders [5℄.This work deals with a system of two neutral kaons produ
ed in a φ meson de
ay. Su
h pairs areprodu
ed at DAΦNE, Fras
ati φ-fa
tory. A system of two neutral kaons has been 
alled one of themost intriguing in nature for quite a long time [6, 7℄ and it is de�nitely worth investigating into, andnot only be
ause it allows testing symmetries. The ne
essity to 
onserve parity and 
harge 
onjugationeigenvalues in φ de
ays leads to expressions whi
h straightforwardly suggest quantum me
hani
s teststhrough the phenomenon 
alled quantum entanglement.The goal of this thesis is to show how, starting from very basi
 assumptions, one 
an dedu
e aboutneutral kaons system properties basing on the time intervals between the de
ays of quantum entangledkaons. This is done on a more basi
 level than usually presented in papers, hen
e it allows even a readerwho is less familiar with the subje
t to follow the arguments. In 
ase of doubts, many 
al
ulations arein
luded in the appendix.The other topi
 
onsidered, whi
h also is of great interest, is the analysis of possible CPT symmetryand quantum me
hani
s violation in the neutral kaons system. Among sour
es proposed to possiblylead to this yet unobserved violations is the evolution of pure states into mixed states. A suitableparameterisation of double de
ay rates and results of analysis of KLOE data from the year 2005 arepresented. However, results obtained in this work should not be 
ompared dire
tly to KLOE ones, asthere were di�eren
es in the �tting methods used. These di�eren
es will be emphasized in the text.
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2 Neutral kaons system2.1 HamiltonianAt the moment of produ
tion, neutral kaon is a superposition of K0 and K̄0 states:
|K (0)〉 = a (0)

∣

∣K0
〉

+ b (0)
∣

∣K̄0
〉 , (1)while its time evolution 
an be des
ribed as:

|K (t)〉 = a (t)
∣

∣K0
〉

+ b (t)
∣

∣K̄0
〉

+
∑

j

cj (t) |fj〉 , (2)where the sum is over all �nal states |fj〉 a kaon may de
ay to. As the fun
tions a and b are time-dependent, it follows from this formula that a neutral kaon 
an os
illate between ∣∣K0
〉 and ∣∣K̄0

〉 states,whi
h in fa
t happens with a frequen
y of about 5.3 GHz, being a se
ond-order weak pro
ess withstrangeness 
hange |∆S| = 2. Phenomenology of the neutral kaons system is su

essfully des
ribed bythe Wigner-Weisskopf approximation [8℄. Although studies of possible deviations from this approxi-mation have been performed, further tests are desirable as the e�e
ts that are sear
hed for in K0-K̄0
omplex are very tiny [9℄. With the help of Wigner-Weisskopf approximation one �nds that the fun
tions
a(t) and b(t) obey the S
hrödinger-like equation with e�e
tive Hamiltonian H [7℄:

i
∂

∂t

(

a (t)
b (t)

)

= H

(

a (t)
b (t)

) . (3)Let us denote ψ = e−iHtψ0 with ψ0 = ψ(t = 0). Sin
e the kaons de
ay, we have the 
ondition 0 > d|ψ|2

dt ,and by writing the wave fun
tion more expli
itly we obtain:
0 >

d
(

ψ†ψ
)

dt
=ψ† dψ

dt
+
dψ†

dt
ψ = ψ† (−iH) e−iHtψ0 + ψ†

0iH
†eiH

†tψ =

= − iψ†
(

H − H
†
)

ψ, (4)so 
learly H is not hermitian. However, in general any 
omplex matrix 
an be divided into its hermitianand antihermitian parts. In this parti
ular 
ase we write:
H = M− i

2
Γ =

(

M11 M12

M∗
12 M22

)

− i

2

(

Γ11 Γ12

Γ∗
12 Γ22

) , (5)where M and Γ are hermitian and are 
alled mass and de
ay matri
es, respe
tively. Elements M11 and
Γ11 
an be asso
iated with K0, while M22 and Γ22 
an be linked with K̄0. It should be expe
ted thatthe de
ay part leads to exponential damping, hen
e the minus sign and the fa
tor 1

2 (the dependen
eon time will be of the usual form ψ ∼ e−iEt = e−i(m−iΓ/2)t = e−imte−Γt/2, so |ψ|2 ∼ e−Γt).2.2 SymmetriesIn this se
tion 
onne
tion between symmetries in the neutral kaons system and Hamiltonian matrixelements is dis
ussed.2.2.1 CPTOne of the 
onsequen
es of the CPT theorem is that masses and widths of parti
les and theirantiparti
les are the same, so in this 
ase mK0 = mK̄0 and ΓK0 = ΓK̄0 . In addition to this, CPTsymmetry ensures that probabilities of transitions K0 → K0 and K̄0 → K̄0 at a given time are thesame. For Hamiltonian matrix (5) this implies:
CPT : M11 = M22, Γ11 = Γ22; H11 = H22. (6)9



2.2.2 TSymmetry with respe
t to time reversal implies that transitions K0 → K̄0 and K̄0 → K0 at agiven time have the same probabilities. In the Hamiltonian matrix (5) elements responsible for thesetransitions are H12 and H21. Therefore we have:
T : |H12| = |H21| . (7)2.2.3 CPAn additional hierar
hy among the symmetry violations is introdu
ed by quantum me
hani
s for atwo-state systems: the dete
tion of a violation of the CPT or (and) of the T symmetry implies a CPsymmetry violation [10℄. Hen
e we have:

CP : H11 = H22 and |H12| = |H21| . (8)2.3 Eigenvalues, eigenstatesThe equation for eigenvalues of the Hamiltonian is generi
 (for slightly ri
her 
al
ulations used forthis se
tion refer to A.1.1):
det (H − λ1) = 0, (9)from whi
h it is straightforward to obtain:

λ2 − λ (H11 +H22) +H11H22 −H12H21 = 0. (10)From the equation above one �nds the dis
riminant:
∆ = (H11 −H22)

2 + 4H12H21. (11)From this we �nd the eigenvalues of H in the limit of CP and CPT (refer to se
tion A.1.1 for moredetails):
λ± =

1

2

(

H11 +H22 ±
√

4H12H21

)

CPT
==== H11 ±

√

H12H21, (12)where the square root, written expli
itly in terms of M12 and Γ12, is:
√

H12H21 =

√

|M12|2 +
1

4
|Γ12|2 exp

[

− i

2
arcsin

(

|M12Γ12|
|M12|2 + 1

4 |Γ12|2

)] . (13)Having the eigenvalues we pro
eed to 
al
ulate the eigenstates of H (slightly ri
her 
al
ulations arein
luded in se
tion A.1.2). Equation for eigenstates is generi
:
(

H11 − λ± H12

H21 H22 − λ±

)

v± = 0. (14)If one de�nes:
v±

def
==

(

u±
w±

) and e−2iα def
==

H12

H21
,the eigenve
tors 
an be shown to be of the form:

v+ = u+e
iα
2

(

e−i
α
2

ei
α
2

) ,
v− = −w−e

−iα
2

(

e−i
α
2

−eiα
2

) . (15)
10



One 
an note that v+ and v− are CP−even and CP−odd, respe
tively [11℄. Therefore by 
ontinuitywe identify:
v+ ≡ |KS〉, v− ≡ |KL〉 ; (16)

λ+ ≡ λS = mS − i
ΓS
2
, λ− ≡ λL = mL − i

ΓL
2
. (17)The short- and long-lived |KS〉 and |KL〉 states are 
ommonly expressed as:

|KS〉 =
1

√

2
(

1 + |ǫS |2
)

[

(1 + ǫS)
∣

∣K0
〉

+ (1 − ǫS)
∣

∣K̄0
〉] ,

|KL〉 =
1

√

2
(

1 + |ǫL|2
)

[

(1 + ǫL)
∣

∣K0
〉

− (1 − ǫL)
∣

∣K̄0
〉] . (18)Additional information about the mass di�eren
e between these parti
les, their mean lifetimes andmain de
ay modes is provided in Tab. 1. In the equations above ǫS and ǫL are small (of the order

10−3), 
omplex parameters measuring CP violation for KS and KL. Another pair of parameters 
anbe equivalently de�ned:
ǭ ≡ ǫS + ǫL

2
, (19)

δ ≡ ǫS − ǫL
2

. (20)
ǭ informs about average CP violation for neutral kaons, while δ is a CPT -violating parameter whi
hwill be useful later.Table 1: Sele
ted information about KS and KL parti
les. The data are extra
ted from [12℄.Parameter KS KLlifetime (89.58 ± 0.05) ps (51.16 ± 0.20) nsmass di�eren
e, mL −mS (3.4819 ± 0.0099)·10−6 eV

main de
ay modes, Γi/Γ

π+π− 0.6920 ± 0.0005 π±e∓νe 0.4055 ± 0.0012
π0π0 0.3069 ± 0.0005 π±µ∓νµ 0.2704 ± 0.0007
π+π−γ (1.79 ± 0.05)·10−3 3π0 0.1952 ± 0.0012
π±e∓νe (7.04 ± 0.08)·10−4 π+π−π0 0.1254 ± 0.0005
π±µ∓νµ (4.69 ± 0.05)·10−4 π+π− (1.966 ± 0.010)·10−3

π0π0 (8.65 ± 0.06)·10−4
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3 Final states amplitudes for φ → K0K̄0 → f1f2At KLOE, neutral kaons are produ
ed in φ meson de
ay, JPC = 1−−, with a 33.8% probability (forthe list of the main φ de
ay modes, see Tab. 2).Table 2: Main φ de
ay modes.De
ay mode Bran
hing ratio (%) [12℄
K+K− 49.1
K0K̄0 33.8

ρπ + π+π−π0 15.6
ηγ 1.26To 
onserve the eigenvalues of P and C, the (normalized) initial state of the two kaons, written inthe φ rest frame, has to be:

|i〉 =
1√
2
{
∣

∣K0 (−~p)
〉 ∣

∣K̄0 (+~p)
〉

−
∣

∣K̄0 (−~p)
〉 ∣

∣K0 (+~p)
〉

}. (21)It is easy to show that C |i〉 = − |i〉 and P |i〉 = − |i〉, as required.We 
an 
hange the basis of strangeness eigenstates (suitable for the des
ription of kaon pair produ
-tion), {∣∣K0
〉 , ∣∣K̄0

〉}, to the basis of Hamiltonian eigenstates suitable for the des
ription of the de
ays,{|KS〉 , |KL〉} (refer to A.2.1 for pre
ise 
al
ulations):
|i〉 =

N√
2
{|KS (+~p)〉 |KL (−~p)〉 − |KL (+~p)〉 |KS (−~p)〉}, (22)where
N =

√

(

1 + |ǫS|2
)(

1 + |ǫL|2
)

1 − ǫSǫL
≈ 1 (23)is a normalization fa
tor.Given eq. (22), one 
an 
al
ulate a general formula for the double de
ay rate of the initial two kaonsstate, whi
h will be done in the following se
tion. Later a spe
i�
 
ase of two identi
al �nal states isdis
ussed (se
tion 3.2), and �nally two (out of many) interesting examples of di�erent �nal states arepresented in se
tion 3.3.3.1 General 
aseFollowing quantum me
hani
s rules, the de
ay amplitude of the two kaons state (22) into �nal states

f1 and f2 at times t1 and t2 and momenta +~p and −~p, respe
tively, 
an be expressed as:
A (f1, t1; f2, t2) =

N√
2
{〈f1 |T |KS (t1)〉 〈f2 |T |KL (t2)〉+

− 〈f1 |T |KL (t1)〉 〈f2 |T |KS (t2)〉} =

=
N√
2
{〈f1 |T |KS〉 〈f2 |T |KL〉 e−iλSt1e−iλLt2+

− 〈f1 |T |KL〉 〈f2 |T |KS〉 e−iλLt1e−iλSt2} =

=
N√
2
{〈f1 |T |KS〉 〈f2 |T |KL〉 e−imSt1e−

1
2
ΓSt1e−imLt2e−

1
2
ΓLt2+

− 〈f1 |T |KL〉 〈f2 |T |KS〉 e−imLt1e−
1
2
ΓLt1e−imSt2e−

1
2
ΓSt2}, (24)where T is an operator whose expli
it form is unknown, but also not needed here.12



The 
omplex 
onjun
tion of this amplitude reads:
A∗ (f1, t1; f2, t2) =

N∗

√
2
{〈f1 |T |KS〉∗ 〈f2 |T |KL〉∗ eimSt1e−

1
2
ΓSt1eimLt2e−

1
2
ΓLt2+

− 〈f1 |T |KL〉∗ 〈f2 |T |KS〉∗ eimLt1e−
1
2
ΓLt1eimSt2e−

1
2
ΓSt2}. (25)The double de
ay rate of the two kaons into f1 and f2 
orrespondingly at times t1 and t2 
an nowbe 
al
ulated (detailed 
al
ulations 
an be found in A.2.2):

I (f1, t1; f2, t2) = |A (f1, t1; f2, t2)|2 = A (f1, t1; f2, t2)A
∗ (f1, t1; f2, t2) =

= C12{|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2+

− 2 |η1| |η2| e−
ΓS+ΓL

2
(t1−t2)
os [∆m (t1 − t2) + φ2 − φ1]}, (26)where we have denoted:

C12 =
|N |2

2
|〈f1 |T |KS〉 〈f2 |T |KS〉|2 (27)and introdu
ed de
ay amplitude ratios ηi:

ηi = |ηi| eiφi ≡ 〈fi |T |KL〉
〈fi |T |KS〉

. (28)Experimental data may be easier to 
ompare with one-dimensional time distributions, when di�er-en
e ∆t = t1 − t2 is used instead of de
ay times t1 and t2. To �nd the ∆t distribution it is ne
essaryto 
hange variables to t = t1 + t2 (the simplest 
hoi
e) and ∆t and then integrate the obtained formulaover t (see A.2.3 for additional 
omments and 
al
ulations). The results for positive and negative ∆tare as follows:
I (f1, f2,∆t ≥ 0) =

C12

ΓS + ΓL
{|η1|2 e−ΓL∆t + |η2|2 e−ΓS∆t+

− 2 |η1| |η2| e−
ΓS+ΓL

2
∆t
os [∆m∆t+ φ2 − φ1]}, (29)

I (f1, f2,∆t ≤ 0) =
C12

ΓS + ΓL
{|η1|2 e−ΓS |∆t| + |η2|2 e−ΓL|∆t|+

− 2 |η1| |η2| e−
ΓL+ΓS

2
|∆t|
os [∆m |∆t| + φ1 − φ2]}.

(30)3.2 Identi
al �nal statesIn the 
ase when �nal states f1 and f2 are the same, eqs. (29) and (30) are signi�
antly simpli�ed.Straight from eq. (28) we have η1 = η2, so in parti
ular |η1| = |η2| and φ1 = φ2. Eqs. (29) and (30)be
ome:
I (f1 = f2,∆t ≥ 0) = I (f1 = f2,∆t ≤ 0) =

=
C12 |η|2
ΓS + ΓL

{e−ΓL|∆t| + e−ΓS |∆t| − 2e−
ΓS+ΓL

2
|∆t| cos (∆m |∆t|)} , (31)where eta's subs
ript is omitted for simpli
ity. It is 
lear that fun
tion I is even in ∆t. It is also visiblethat the shape of the 
urve I does not depend on the 
hoi
e of �nal states as long as they are the same.There are two regions of parti
ular interest. The �rst one, around 4τS , is the most sensitive to ∆mvalue, as presented in Fig. 1 on page 14. The se
ond one is 
lose to ∆t = 0. We easily see that:

I (f1 = f2,∆t = 0) =
C12 |η|2
ΓS + ΓL

{1 + 1 − 2} = 0.Therefore, for identi
al �nal states, no events are expe
ted in ∆t = 0 within the s
ope of quantumme
hani
s. De
ays to identi
al �nal states are des
ribed further in 
hapter 4.13



Figure 1: Double de
ay rate as a fun
tion of ∆t for identi
al �nal states. The solid 
urve is for 
urrent
∆m value, while the dashed line is for ∆m 10% bigger. It 
an be seen that the most sensitive regionfor ∆m is around the interferen
e peak (∼ 4τS).3.3 Other useful �nal states3.3.1 Double semileptoni
 �nal stateWe pro
eed to dis
uss a situation, in whi
h both kaons de
ay via semileptoni
 
hannel, but todi�erent �nal states. This means that the produ
ts of the de
ay are π+l−ν̄ and π−l+ν, where l 
an beeither an ele
tron (positron) or a muon.

(a) (b)Figure 2: Feynman diagrams for semileptoni
 K̄0 (a) and K0 (b) de
ays. In the �rst order, K̄0 
ande
ay to π+e−ν̄, but not to π−e+ν, and vi
e versa for K0.It will be useful to show that in semileptoni
 de
ays neutral kaons obey a ∆S = ∆Q rule, where
∆S is the di�eren
e of strangeness between �nal and initial state, and ∆Q is the di�eren
e of 
harge,but only between parti
les intera
ting strongly - in this 
ase between a pion and a kaon (obviously,
onsidering the whole rea
tion, the 
harge is 
onserved). This 
an be explained basing on Feynmandiagrams for these pro
esses. Let us 
onsider K̄0 �rst (Fig. 2a). It 
onsists of two quarks, d̄ and s. Weassume that quark d̄ survives, while quark s de
ays weakly into quark u by emitting a W− boson. Then14



quarks d̄ and u form a positive pion π+, and W− de
ays into l−ν̄. Note that π− 
annot be 
reatedin this de
ay (at least with the same me
hanism). Hen
e, it is eligible to assume that K̄0 de
ays into
π+l−ν, and not into π−l+ν. Analogous arguments lead us to the result, that K0 de
ays into π−l+ν(
orresponding diagram is presented in Fig. 2b).A 
ommon 
onvention is to de�ne amplitudes for semileptoni
 de
ays obeying ∆S = ∆Q rule asfollows:

〈

π−l+ν |T |K0
〉

= a+ b, 〈

π+l−ν̄ |T | K̄0
〉

= a∗ − b∗; (32)and for pro
esses violating ∆S = ∆Q rule in a similar way:
〈

π+l−ν̄ |T |K0
〉

= c+ d, 〈

π−l+ν |T | K̄0
〉

= c∗ − d∗. (33)The CPT invarian
e requires the equality of the probabilities for a kaon and an antikaon to developinto themselves [10℄. Hen
e, a nonzero value of parameter b or d would imply CPT violation. Threenew parameters 
an be introdu
ed:
y = − b

a
, x+ =

c∗

a
, x− = −d

∗

a
. (34)Parameter y measures CPT violation in pro
esses obeying the ∆S = ∆Q rule, whilst x+ and x− measure

∆S = ∆Q rule violation in pro
esses 
onserving and violating CPT transformation, respe
tively. Toobtain parameters ηl+ and ηl− for semileptoni
 de
ays, we �rst 
ombine eqs. (18), (28), (32) and (33).
〈

π−l+ν |T |KS

〉

=
1

√

2
(

1 + |ǫS|2
)

[(1 + ǫS) (a+ b) + (1 − ǫS) (c∗ − d∗)] ,
〈

π−l+ν |T |KL

〉

=
1

√

2
(

1 + |ǫL|2
)

[(1 + ǫL) (a+ b) − (1 − ǫL) (c∗ − d∗)] ,
〈

π+l−ν̄ |T |KS

〉

=
1

√

2
(

1 + |ǫS|2
)

[(1 − ǫS) (a∗ − b∗) + (1 + ǫS) (c+ d)] ,
〈

π+l−ν̄ |T |KL

〉

= − 1
√

2
(

1 + |ǫL|2
)

[(1 − ǫL) (a∗ − b∗) − (1 + ǫL) (c+ d)] .Let us assume that ∆S = ∆Q rule holds. We now 
al
ulate parameters ηl+ and ηl− for semileptoni
de
ays:
ηl+ =

〈π−l+ν |T |KL〉
〈π−l+ν |T |KS〉

=

√

1 + |ǫS|2

1 + |ǫL|2
· 1 + ǫL
1 + ǫS

≈ 1 · (1 + ǫL) (1 − ǫS) ≈ 1 + ǫL − ǫS = 1 − 2δ,
ηl− =

〈π+l−ν̄ |T |KL〉
〈π+l−ν̄ |T |KS〉

= −
√

1 + |ǫS |2

1 + |ǫL|2
· 1 − ǫL
1 − ǫS

≈ 1 · (ǫL − 1) (1 + ǫS) ≈ −1 + ǫL − ǫS = −1 − 2δ. (35)For 
ompleteness, the general formulae are given by [7℄:
ηl+ = 1 − 2δ − 2x+ − 2x−,
ηl− = −1 − 2δ + 2x∗+ − 2x∗−. (36)The plot of de
ay intensity for �nal states f1 = π−l+ν and f2 = π+l−ν̄ is shown in Fig. 3. Thedistributions are for δ = 0 (red line) and for δ = 5 · 10−4 + 0.05i (blue line).15



Figure 3: Double de
ay rate for semileptoni
 �nal states with the 
hoi
e f1 = π−l+ν and f2 = π+l−ν̄.Red and blue lines 
orrespond to δ = 0 and δ = 5 · 10−4 + 0.05i, respe
tively.3.3.2 Semileptoni
 and two pions �nal stateHaving shortly des
ribed de
ays to the same (se
tion 3.2) and similar (3.3.1) �nal states we pro
eedto a situation where kaons de
ay to dissimilar �nal states, namely to πlν and ππ. From the previousse
tion we know that |ηl+ | ≈ |ηl− | ≈ 1 and from the de�nition (28) we see that |ηππ| is of the order of
CP violation, |ηππ| ≈ 10−3 both for π+π− and π0π0. Therefore the di�eren
e between double de
ayrates for positive and negative times (29,30) will be of more than �ve orders of magnitude.

Figure 4: De
ay rate intensity I(πlν, ππ) for π−l+ν (solid line) and π+l−ν̄ (dashed line).16



Fig. 4 displays the double de
ay intensity with the 
hoi
e f1∓ = π±l∓ν, f2 = ππ. Interesting pattern
an be seen for events in whi
h ∆t < 0. We have:
I
(

π±l∓ν, ππ;∆t < 0
)

=
C1∓2

ΓS + ΓL

{

|∓1 − 2δ|2 e−ΓS |∆t| + |ηππ|2 e−ΓL|∆t| +

− 2 |∓1 − 2δ| |ηππ| e−
ΓL+ΓS

2
|∆t|
os [∆m |∆t| + φπlν − φππ]

} . (37)We note that the right-hand side of the equation above has three terms 
orresponding to three regions inFig. 4. For small negative ∆t eq. (37) is dominated by the �rst term, whi
h de
ays rapidly as e−ΓS |∆t|,then there is interferen
e region with its term involving |ηππ|, ∆m and φππ, and �nally the se
ond termresults in KL de
ay shape suppressed by |ηππ|2 for ∆t < 20τS . Therefore from measuring distributionswith the �nal states 
onsidered we 
an gain knowledge about phases φ+− and φ00, absolute values of
η+− and η00 parameters and mass di�eren
e ∆m = mL −mS. However, more pre
ise value of ∆m 
anbe extra
ted from measuring (π+π−, π+π−) �nal states, while for |η+−| and |η00| more a

urate resultsmay be obtained from analysing in
lusive ππ distributions [13℄.
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4 Conne
tion between double de
ay rate and CPT symmetry4.1 Quantum entanglement, EPR paradoxAs already des
ribed in se
tion 3.2, 
onsidering the double de
ay rate to identi
al �nal states,a

ording to quantum me
hani
s we do not expe
t any events in ∆t = 0. This is very 
ounterintuitive,as the two de
ays are spa
e-like separated events and one 
ould think that ea
h kaon should behaveindependently of the other one. This kind of 
orrelation is of the type �rst mentioned by Einstein,Podolsky and Rosen in their well-known arti
le [14℄, where the authors 
riti
ize Bohr's view of quantumme
hani
s and, basing on a thought-experiment whose out
ome is not only nonintuitive, but also appearsto be nonlo
al, suggest that quantum-me
hani
al des
ription of physi
al reality given by wave fun
tions
annot be 
onsidered 
omplete. This type of 
onne
tion between parti
les was soon investigated furtherby S
hrödinger, who 
oined a term entanglement (Vers
hränkung) to des
ribe the perplexing bondbetween quantum systems [15℄. Obviously S
hrödinger 
ould not have known about kaons at the timeof writing his paper, instead he 
onsidered a two-body de
ay and the measurement of positions andmomenta of parti
les in view of Pauli ex
lusion prin
iple. An interested reader is also referred to Ref. [16℄.The term de
oheren
e in general means the time evolution of a pure state into an in
oherent mixtureof states [7℄. To a

ount for possible de
oheren
e in the neutral kaons system phenomenologi
ally, one
an simply modify the equation for the double de
ay rate (26) by multiplying the interferen
e term bya fa
tor (1 − ζ), where ζ is a de
oheren
e parameter:
I (f1, t1; f2, t2) = C12{|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2 +

− 2 (1 − ζ) |η1| |η2| e−
ΓS+ΓL

2
(t1−t2)
os [∆m (t1 − t2) + φ2 − φ1]}. (38)By taking ζ = 0 eq. (26) is re
reated (so it is quantum me
hani
s 
ase), while the 
ase of ζ = 1
orresponds to total de
oheren
e. As it turns out, the parameter ζ is basis-dependent [17℄. Currentmeasurements of ζ in the two main bases, {|KS〉 , |KL〉} and {∣∣K0

〉 , ∣∣K̄0
〉}, are 
ompatible with nodeviations from quantum me
hani
s [18℄:

ζSL =
(

0.3 ± 1.8stat ± 0.6syst) · 10−2,
ζ00̄ =

(

1.4 ± 9.5stat ± 3.8syst) · 10−7. (39)
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Figure 5: De
ay rate as a fun
tion of ∆t for eq. (38). The blue and red lines are for ζ = 0 and ζ = 0.05respe
tively. The biggest dis
repan
y between these two fun
tions is for ∆t 
lose to 0.18



Fig. 5 illustrates the di�eren
e between the double de
ay rates for two values of ζSL: ζSL = 0 and
ζSL = 0.05. From these plots one 
on
ludes that nonzero ζSL parameter would manifest itself mainlyin the region 
lose to ∆t = 0.4.2 Evolution of pure into mixed statesA dis
ussion of a new sour
e of CPT and quantum me
hani
s violation was opened when Hawkingshowed that bla
k holes 
an 
reate parti
les and evaporate by emitting them, resembling hot bodies [19℄.In his subsequent papers [20℄ he introdu
ed the idea of the evolution of pure states into mixed states inthe vi
inity of bla
k holes. Assume one started from an initial pure quantum state (des
ribed in termsof a 
omplete set of 
ommuting observables), whi
h would partially fall through the event horizon insidethe bla
k hole. The des
ription of this quantum state in terms of observables in the future would requiretwo sets of observables, observables at in�nity des
ribing outgoing parti
les, and observables inside thebla
k hole des
ribing what fell through the event horizon. As one even in prin
iple 
annot measure whatfell into a bla
k hole, the observation would have to be des
ribed by a mixed state obtained by summingover all possible bla
k hole states. This is in 
ontradi
tion with quantum me
hani
s, where a pure stateremains pure through its evolution and is forbidden to evolve into a mixed one. Moreover, a

ording toproof by Wald [21℄, su
h evolution from pure to mixed states is in
ompatible with T or CPT invarian
e.Hawking further predi
ts that the most probable s
enario for a bla
k hole is its 
omplete disappearan
ea

ompanied by the loss of information about its states, and argues that su
h transitions from pureinto mixed states are also possible on a mi
ros
opi
 (elementary parti
le) level be
ause of quantum�u
tuations of the metri
, whi
h 
ould be interpreted as virtual bla
k holes whi
h appear and disappearagain.Theoreti
al 
onsiderations des
ribed above led Ellis et al. to develop an appropriate phenomenologi-
al framework for dis
ussing violations of quantum me
hani
s due to evolution of pure states into mixedstates [22℄. The formalism introdu
ed is applied to neutron interferometry and to experiments involvingneutral kaons, on whi
h we will 
on
entrate. In general, the approa
h is based on density matrix ratherthan on Hamiltonian equation. Let H be the Hamiltonian de�ned in eq. (5) and ρ the density matrix.The following modi�
ation of Liouville-von Neumann equation is proposed (here a slightly simpli�ednotation from Ref. [7℄ is used):

dρ

dt
= −iHρ+ iρH† + iδ /Hρ (40)The last term on the right-hand side of the above equation is responsible for de
oheren
e. When oneexpands ρ in terms of Pauli spin matri
es σi and the identity σ0 and uses the basis of CP eigenstatesfor kaons, δ /H 
an be represented by a 4×4 matrix δ /Hµν whi
h a
ts on a 
olumn ve
tor with ρµ as
omponents. The elements of δ /H should respe
t two natural restri
tions, namely they ought to be
onsistent with probability 
onservation and they should not de
rease the entropy of the system (inother words, mixed states should not be allowed to evolve into pure states). The authors of Ref. [22℄added a 
ondition that the new term 
annot 
hange strangeness. Taking into a

ount these 
onstraints,the δ /H matrix is found to have only four non-vanishing elements:

δ /H = −2









0 0 0 0
0 0 0 0
0 0 α β
0 0 β γ









. (41)Here α, β and γ are three real parameters violating CPT and quantum me
hani
s. To ensure thatTrρ2 does not ex
eed unity (so that we avoid states with 
omplex entropy), they should satisfy theinequalities α > 0, γ > 0 and αγ > β2 [22℄. See also se
tion 6.3 for expe
ted boundaries of theirvalues.The extension of this formalism to a pair of entangled kaons was done by Huet and Peskin [23℄.Among other results, they obtained the double de
ay rate in terms of de
ay times t1, t2 and α, β, γ19



parameters for the de
ay to (π+π−;π+π−):
I
(

π+π−, t1 ; π+π−, t2
)

=

= 2 |A0|4
{

RL
(

e−ΓSt1−ΓLt2 + e−ΓLt1−ΓSt2
)

− 2 |η̄+−|2 cos [∆m (t1 − t2)] e
−(Γ̄+α−γ)(t1+t2)

+ 4
β

|d| |η̄+−| sin (∆mt1 + φ+− − φSW ) e−(Γ̄+α−γ)t1e−ΓSt2+

+ 4
β

|d| |η̄+−| sin (∆mt2 + φ+− − φSW ) e−(Γ̄+α−γ)t2e−ΓSt1+

− 2

(

γ

∆Γ
+ 2

β

|d| |η̄+−|
sinφ+−

cosφSW

)

e−ΓS(t1+t2)

} , (42)where:
d = ∆m+

i

2
∆Γ (∆m and ∆Γ are de�ned to be positive, i.e. ∆m = mL −mS and ∆Γ = ΓS − ΓL),

|η̄+−|eiφ+− = ǫ−L ,
ǫ−L = ǫL − β

d
,

RL = |ǫ−L |2 +
γ

∆Γ
+

4β

∆Γ
ℑ
(

ǫ−Ld

d∗

) .Now we repeat the pro
edure des
ribed in se
tion 3.1, i.e. a swit
h to t = t1 + t2 and ∆t = t1 − t2variables followed by integration in t. Sin
e the �nal states in this 
ase are identi
al, it is enough to
al
ulate the double de
ay rate for ∆t ≥ 0. The result is:
I
(

π+π−, π+π− ; ∆t
)

=

= |A0|4 |η̄+−|2
{

RL

|η̄+−|2 · Γ̄
(

e−ΓS∆t + e−ΓL∆t
)

− 2

Γ̄ + α− γ
cos (∆m∆t) e−(Γ̄+α−γ)∆t +

+
8β

|d| |η̄+−|
[

(

Γ̄ + α− γ + ΓS
)2

+ (∆m)2
] ·

·
[

[(

Γ̄ + α− γ + ΓS
)

sin (∆m∆t+ φ+− − φSW ) + ∆m cos (∆m∆t+ φ+− − φSW )
]

e−(Γ̄+α−γ)∆t +

+
[(

Γ̄ + α− γ + ΓS
)

sin (φ+− − φSW ) + ∆m cos (φ+− − φSW )
]

e−ΓS∆t
]

+

− 2

ΓS

(

γ

∆Γ |η̄+−|2
+

2β

|d| |η̄+−|
sinφ+−

cosφSW

)

e−ΓS∆t

} . (43)

20



5 KLOE and KLOE-2 experimentsThe K Long Experiment (KLOE) [24, 25, 26℄, whi
h started data taking in 1999 and 
on
ludedin 2006, was lo
ated at the 
rossing point of ele
tron and positron beams of DAΦNE 
ollider [27℄ atLaboratori Nazionali di Fras
ati (LNF) in Fras
ati, Italy. Now, in the year 2010, a new experiment -KLOE-2 [28℄ - is about to start at the same pla
e. When 
ompared to its prede
essor, the main 
hangesin the new experiment are a new 
ollision s
heme of DAΦNE 
ollider and additional dete
tors - innertra
ker, 
alorimeters and γγ taggers. In this 
hapter DAΦNE 
ollider is des
ribed (5.1), then KLOEdete
tor 
omponents: drift 
hamber (5.2.1) and ele
tromagneti
 
alorimeter (5.2.2) are introdu
ed.Finally new dete
tors involved in KLOE-2 experiment are brie�y dis
ussed (5.3)5.1 DAΦNE 
olliderDAΦNE (Double Annular Φ-fa
tory for Ni
e Experiments) is an ele
tron-positron 
ollider. As thename suggests, most of the time it operates with a 
entre of mass energy around the φ meson mass,
Mφ = (1019.455±0.020) MeV. The φ produ
tion 
ross-se
tion is large and peaks at about 3 mi
robarns.Due to high luminosity and the fa
t that φ mesons de
ay predominantly to kaon pairs (
harged andneutral, see Tab. 2), the φ-fa
tory is espe
ially suitable for investigations in the �eld of kaon physi
s.The 
omponents of DAΦNE are a 60 m long linear a

elerator (LINAC), a 32 m long a

umulator andtwo 100 m long main rings. The layout of the DAΦNE fa
ility is presented in Fig. 6.

Figure 6: DAΦNE fa
ility layout. The �gure is adapted from [25℄.LINAC 
an work in two modes, alternately produ
ing and a

elerating ele
tron and positron beamsto energies of 510 MeV (about half of the φ meson mass). On
e produ
ed and a

umulated, ele
tronsand positrons 
ir
ulate in two separate rings to redu
e beam-beam intera
tion. Parti
les are formedinto bun
hes, and most of the time the number of parti
les in a bun
h is kept on the level of 1010,although this number 
an be smaller for a given bun
h. There are up to 120 bun
hes in ea
h ring. InKLOE experiment every bun
h 
ollided with its 
ounterpart from the other ring in one of two intera
tionregions (see Fig. 7). The other intera
tion region was used for other experiments 
ondu
ted at LNF- FINUDA and DEAR. The situation is di�erent for KLOE-2, as there is going to be only one regionwhere the beams 
ross. Sele
ted parameters of DAΦNE 
an be found in Table 3.
21



Table 3: DAΦNE sele
ted parameters.Parameter ValueEnergy of parti
les 510 MeVNumber of bun
hes up to 120 per ringNumber of parti
les in a bun
h ∼ 1010Frequen
y of 
ollisions ∼ 370 MHz

Figure 7: A fragment of the beam pipe surrounding the KLOE intera
tion region. The �gure is adaptedfrom [29℄.5.2 Dete
torsKLOE dete
tion system has already been des
ribed in details in many publi
ations - an interestedreader is referred to, for instan
e, Ref. [24℄ and [25℄. Here only essential 
omponents of the dete
tor- drift 
hamber and ele
tromagneti
 
alorimeter - are brie�y reviewed. A s
hemati
 view of KLOE isgiven in Fig. 8.

Figure 8: KLOE 
ross-se
tion. The main 
omponents are the drift 
hamber and ele
tromagneti

alorimeter (EMC), surrounded by a super
ondu
ting 
oil. The �gure is adapted from [30℄.22



5.2.1 Drift ChamberThe design of the drift 
hamber (see Fig. 9) was driven by the desire to observe kaons' de
ay produ
tsfrom the φ→ K0K̄0 rea
tions. To a

omplish this goal, it was needed to take into a

ount a relativelylong lifetime of KL, τL ≈ 51 ns (for this and more features of KL and KS , refer to Tab. 1). Knowingthat kaons are produ
ed with momenta ∼ 115 MeV/
, the mean path travelled by a KL meson is readilyobtained as λL = βγcτL ≈ 3.5 m (the mean path of KS , 
omputed in the same way, is λS ≈ 5.6 mm).The solution applied is a 
ylindri
al drift 
hamber, whose diameter and maximal length are 4 m and3.3 m respe
tively (the inner radius is 25 
m). This volume allows us to 
at
h about 30 - 40% of KLde
ays.

Figure 9: KLOE drift 
hamber after 
ompleting the assembly. Light re�e
tion on wires 
an be seen.The �gure is adapted from [26℄.

Figure 10: Cells 
on�guration of the KLOE drift 
hamber. Full points indi
ate sense wires, while pointsempty inside show �eld wires. The �gure is adapted from [26℄.23



Another important requirement for the drift 
hamber [26℄ is that it has a high and uniform re
on-stru
tion e�
ien
y over a large volume. Moreover, it is demanded to have a good momentum resolution.To meet this 
riteria, a uniform stru
ture of drift 
ells ensuring high homogeneity over the whole volumewas planned. To a
hieve this, the drift 
hamber was �lled with 58 
oaxial layers of wires, giving a totalof 12582 almost square 
ells (ea
h with one sense wire). Altogether there are over 50 thousands ofwires, the ratio of the �eld to sense wires being 3:1. Sin
e the tra
k density is mu
h higher at smallradii due to the relatively small momenta of parti
les produ
ed in the φ meson de
ays [31℄, and be
ausere
onstru
ting KS mesons verti
es is desired, 12 innermost layers have 
ells of smaller size, 2 
m x 2
m, while the 
ells of 46 outermost layers are of the size 3 
m x 3 
m. Con�guration of the drift 
ellsis presented in Fig. 10. Wires belonging to the same layer are parallel to ea
h other, while ea
h layeris slightly twisted with respe
t to the neighbouring ones. It turns out that the drift 
hamber is ableto measure 
harged verti
es of KS and KL with ∼ 1 mm a

ura
y and provides fra
tional momentumresolution of σp

p ∼ 0.5% [32℄.One more feature demanded from the drift 
hamber, espe
ially important for neutral kaons physi
s,is its transparen
y to parti
les in order to minimize KL into KS regeneration, multiple s
attering and
onversion of low energy photons. For this reason, low-atomi
-number materials were 
hosen: 
arbon�ber 
omposite for the me
hani
al stru
ture, and the mixture of 90% helium - 10% isobutane for thedrift medium. Taking into a

ount also the presen
e of wires, the average radiation length in the whole
hamber volume is estimated to be about XDC
0 ∼ 900 m [33℄.5.2.2 Ele
tromagneti
 
alorimeterThere is a number of requirements that are expe
ted from KLOE ele
tromagneti
 
alorimeter(Fig. 11). To start with, basing on the time measurement of the arrival of neutral de
ay produ
ts

Figure 11: Ele
tromagneti
 
alorimeter of KLOE. The �gure is adapted from [26℄.of kaons, it should allow to determine KS and KL neutral verti
es with an a

ura
y of few milimeters.As the �ight path of KL before it de
ays into neutral pions is 
al
ulated basing on the time of arrival ofthe photons from π0 de
ays, a good time resolution is ne
essary (with a pre
ision of 100 ps, the �ightpath is determined to ∼ 0.6 
m [34℄). Another task of the 
alorimeter is to distinguish CP-violating
KL → 2π0 from KL → 3π0 de
ay. For this reason, the 
alorimeter should 
over as mu
h of the 4πangle as possible and the e�e
ts of splitting and merging of signals should be minimised. To rea
h thisgoals, a 
alorimeter 
onsisting of a 
ylindri
al, 
entral barrel and two end
aps was built, all of themmarked red in Fig. 8. As a result, 98% of the 4π angle is 
overed. The barrel 
onsists of 24 modules oftrapezoidal shape, ea
h 23 
m thi
k (whi
h 
orresponds to about 15X0 [30℄), whilst ea
h end
ap 
onsistsof 32 verti
al modules, whi
h are bent on both sides into a C-shape. The length of these modules variesfrom 70 
m to 3.9 m. Parti
les 
rossing the ele
tromagneti
 
alorimeter are dete
ted as lo
al energy24



deposits. When the deposits are 
lose in time and spa
e, they are grouped into 
lusters. Energy andtime resolutions for ele
tromagneti
 showers are [35℄:
σ(E)

E
=

5, 7%
√

E(GeV) , σ(t) =
57 ps

√

E(GeV) ⊕ 100 ps.5.3 KLOE-2 upgradesAs already mentioned, in KLOE-2 experiment several new dete
tors are going to be used. In thisse
tion a short des
ription of these new elements is provided. Fig. 12 illustrates the positions of theinner tra
ker and ele
tromagneti
 
alorimeters (CCALs and QCALs).5.3.1 Inner tra
kerWithout doubt this is the most important upgrade when kaon physi
s is 
onsidered. It is expe
tedto in
rease the geometri
al a

eptan
e for low momentum tra
ks, as well as to improve e�e
tiveness ofthe de
ay vertex re
onstru
tion and the tra
k momentum resolution by redu
ing the tra
k extrapolationlength [35℄.

Figure 12: KLOE-2 dete
tor s
heme around the intera
tion point. CGEM denotes 
ylindri
al gas ele
-tron multipliers, CCAL stands for 
rystal 
alorimeters, and QCAL indi
ates quadrupole tile 
alorimeters.The �gure is adapted from [36℄.The inner tra
ker will 
onsist of four 
ylindri
al GEM (CGEM) dete
tors (GEM standing for gasele
tron multiplier, dete
tor des
ribed for the �rst time in Ref. [37℄). It will be about 50 
m long, pla
edbetween the beam pipe and the drift 
hamber inner wall. While the radius of the outermost layer isnaturally limited by the presen
e of the drift 
hamber, the radius of the innermost layer should be
hosen in order not to destroy the interferen
e pattern (for example in Fig. 1) due to KS regenerationphenomenon. Taking into a

ount these 
onstrains, inner and outer radii of the inner tra
ker have beendesigned to be 129.5 mm and 220 mm, respe
tively [36℄. 129.5 mm 
orresponds to about 23τS , so, as
an be dedu
ed from Fig. 1, the interferen
e pattern will not be destroyed. Simulations results [38℄indi
ate that thanks to this dete
tor the un
ertainty of the vertex position 
an be redu
ed by a fa
tor
∼2.5.
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5.3.2 CalorimetersThe motivation for using extra 
alorimeters (apart from the barrel and end
aps des
ribed in 5.2.2)is to in
rease the dete
tor a

eptan
e for photons 
oming from the vi
inity of the intera
tion region.Important analyses whi
h 
an bene�t from these dete
tors in
lude the sear
h for KS → 3π0 de
ay andmeasurements of KS → γγ and η → π0γγ bran
hing ratios [39℄. Two types of 
alorimeters are going tobe used:
• CCALT [40, 41, 42℄ - 
rystal 
alorimeters with timing, lo
ated between the end of the spheri
albeam pipe (of 10 
m radius) and the �rst quadrupole (30 
m from the intera
tion point). Thesedete
tors will extend the angular 
overage of the KLOE-2 ele
tromagneti
 
alorimeter from polarangle of 20◦ down to 8◦. Ea
h of them will 
onsist of two 
on
entri
al, 
ylindri
al barrels. Thematerial used is 
erium-doped LYSO (Lu18Y0.2SiO5 : Ce). When 
ompared to PbWO4, its s
in-tillation emission time is 4 times longer, but it is more than 
ompensated for by 300 times largerlight yield.
• QCALT [40, 41, 43℄ - quadrupole tile 
alorimeters sorrounding the inner quadrupoles. As QCALTsshould improve the re
onstru
tion ofKL → 2π0 de
ays, there is a number of features required fromthese dete
tors, in
luding high e�
ien
y to low energy (20-300 MeV) photons, time resolution ofless than 1 ns and spa
e resolution of few 
entimeters. QCALTs are 1 m long with dode
agonalstru
ture and they are 
omposed of �ve 5 mm thi
k s
intillator plates alternated with 3.5 mmthi
k tungsten plates, together giving a depth of 5.5 X0.5.3.3 γγ taggersThe goal of using γγ taggers is, as the name suggests, to tag the presen
e of a pair of photons inthe drift 
hamber. To a
hieve this goal, it is ne
essary to measure ele
trons (positrons), whose energyis lower than nominal 510 MeV. From su
h measurement one infers that e+ and e− intera
ted, and it isassumed that the rea
tion was of the form e+e− → e+e−γ∗γ∗ → e+e−X.

Figure 13: Positions of γγ-tagging dete
tors. Positions of Low Energy Tagger (LET) and High EnergyTagger (HET) are indi
ated by arrows. The �gure is adapted from [44℄.Simulation shows that ele
trons with energies below 250 MeV will exit the beam pipe within 1 mfrom the intera
tion point [45℄, while those with energies greater than 420 MeV, fo
used by the �rst26



fo
using quadrupole, will leave the va
uum 
hamber downstream the bending magnet [39℄. The dete
torsmeasuring low- and high-energy ele
trons are 
alled LET (standing for low energy tagger) and HET(high energy tagger), respe
tively, and their positions are shown in Fig. 13 (note that `low' and `high'here a
tually apply to the measured ele
trons, not to tagged photons). For parti
les rea
hing HET thereis a 
lear 
orrelation between energy and position, hen
e a position-sensitive dete
tor 
an be used [46℄.On the other hand parti
les dete
ted in LET show no su
h 
orrelation, and for this reason LET has tobe an energy-sensitive dete
tor, i.e. a 
alorimeter [45℄.
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6 Fun
tion I(π+π−, π+π− ; ∆t) with parameters α, β, γ - �t to dataIn this 
hapter the results of �tting the fun
tion (43) to the experimental data are reported. The
uts used in the data analysis are listed in se
tion 6.1, further te
hni
al information is provided inse
tion 6.2. Finally, in 6.3, obtained results are 
ompared to previous measurements published byKLOE and CPLEAR 
ollaborations.6.1 Cuts appliedThe following 
uts were applied to the presele
ted [47℄ data set before making the �t:
• on KL invariant mass:

√

√

√

√

√2



m2
π +

√

(

m2
π + ~p 2

π1

) (

m2
π + ~p 2

π2

)

−
∑

i=x,y,z

piπ1
piπ2



−mK0 < 5 MeV
• on KS and KL missing masses:

10 MeV2 >
∑

i=x,y,z





(
√

m2
K0 +

(

piKS(L)

)2
−
√

m2
π +

(

piπ1S(L)

)2
−
√

m2
π +

(

piπ2S(L)

)2
)2

+

−
(

piKS(L)
− piπ1S(L)

− piπ2S(L)

)2
]

> −50 MeV2

• on KS and KL missing momenta:
√

∑

i=x,y,z

(

piKS(L)
− piπ1S(L)

− piπ2S(L)

)2
< 10 MeV

• on event global �t:
∑

K=K0,K̄0

i=x,y,z





V K
i −

(

V φ
i + lK n̂Ki

)

σi





2

< 15,where (see also Fig. 14):
V K
i − ith 
omponent of a kaon's vertex position,
V φ
i − φ de
ay position along the ith axis,
lK− kaon's de
ay length,
n̂Ki − kaon's dire
tion obtained from re
onstru
ted tra
ks,
σi− un
ertainty of the kaon's de
ay vertex (quantity derived from Monte Carlo).6.2 Assumptions6.2.1 Fitting fun
tionThe �tting fun
tion is of the form:

ni = N





∑

j

sijǫjIj (α, β, γ)



 , (44)
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Figure 14: Pi
torial de�nition of variables in the event global �t. The �gure is adapted from [48℄.where ni is the expe
ted number of events in the ith bin, N is the normalizing fa
tor (the number of
KSKL → π+π−π+π− events), sij and ǫj are the smearing matrix and e�
ien
y ve
tor, and �nally Ij isthe fun
tion (43) integrated over the bin width of the data histogram:

It′ (α, β, γ) =

t′+δt′
∫

t′

I
(

π+π−, π+π− ; ∆t
)

d (∆t) . (45)Let us de�ne ∆φ := φ+− − φSW . Then the result of (45) is:
It′ (α, β, γ) =

= |A0|4 |η̄+−|2
{

RL

|η̄+−|2 Γ̄

[

1
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1
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− 2
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(

∆mt′
)

−
(

Γ̄ + α− γ
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+
8β

|d| |η̄+−|
[

(

Γ̄ + α− γ + ΓS
)2

+ (∆m)2
] [

(

Γ̄ + α− γ
)2

+ (∆m)2
] ·

·
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)
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+
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)
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cos
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+

+
8β
(

e−ΓSt
′ − e−ΓS(t′+δt′)
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|d| |η̄+−|
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(

Γ̄ + α− γ + ΓS
)2

+ (∆m)2
]

ΓS

[(

Γ̄ + α− γ + ΓS
)

sin (∆φ) + ∆m cos (∆φ)
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− 2

Γ2
S

(

γ

∆Γ |η̄+−|2
+

2β

|d| |η̄+−|
sinφ+−

cosφSW

)

(

e−ΓSt
′ − e−ΓS(t′+δt′)

)

} . (46)6.2.2 Smearing, e�
ien
y, binning, rangeSmearing matrix (Fig. 15) de�nes how the probabilities of re
onstru
ting 
ertain ∆t values dependon a
tual ∆t values. E�
ien
y histogram (Fig. 16) des
ribes the probability of su

essful re
onstru
tion,in this 
ase for the (π+π−, π+π−) de
ay 
hannel, as a fun
tion of ∆t. Both smearing matrix and valuesof e�
ien
ies used in this work are the same as those used in KLOE analyses (obtained from MonteCarlo simulations). As indi
ated by Figures 15 and 16, the data were grouped in 1τS bins, 
omparablewith KLOE resolution [35℄.

Figure 15: Smearing matrix presenting ∆t re
onstru
ted (verti
al axis) vs. real (simulated, horizontalaxis) values.

Figure 16: E�
ien
y for su

essful identi�
ation of (π+π−, π+π−) de
ay as a fun
tion of time di�eren
ebetween the de
ays. 30



What di�ers signi�
antly from KLOE analyses is the range in whi
h the �ts have been performed. Inthis work only time di�eren
es between 0 and 12τS have been taken into a

ount. This limit is justi�edby the observation, that for higher ∆t values the de
ay rate shape is 
onsiderably in�uen
ed by KSregeneration on the beam pipe. In KLOE analyses this e�e
t was a

ounted for, whi
h allowed �ttingin the whole range 
overed by the smearing matrix, 0-50τS .6.2.3 Dealing with small numbersIn this se
tion information about programming approa
h is presented. It is 
ru
ial for understandingthe 
ode in appendix B, however a reader uninterested in 
omputational details 
an without mu
h lossskip to se
tion 6.3.As α, β and γ parameters 
an be as small as 10−20 GeV, a spe
ial way of handling them in programsis needed so that they do not 
ause numeri
al problems. For this reason the following substitution wereused in the 
ode (the a
tual values are on the left side, the values used are after arrows):
~ = 6.58211915 · 10−25 GeV· s −→ ~ = 6.58211915

τS = 0.8958 · 10−10 s −→ τS = 0.8958

τL = 511.6 · 10−10 s −→ τL = 511.6

∆m = 0.5920 · 1010 ~s −→ ∆m = 0.529 · ~Using the above we 
an also write ΓS = ~

τS
, ΓL = ~

τL
and introdu
e a time 
onversion 
onstant tcc = τS

~
.After these rede�nitions ΓS , ΓL and ∆m are in the units of 10−15 GeV, while a produ
t t[in τS units] ·tccis in the units of 1015 GeV−1.6.2.4 A
tual �tting fun
tion, normalisationWe start from modifying eq. (43) by multiplying every term with time by tcc. Instead of (46) weget:
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− 2

Γ2
Stcc
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γ

∆Γ |η̄+−|2
+

2β

|d| |η̄+−|
sinφ+−

cosφSW

)

(

e−ΓStcct′ − e−ΓStcc(t′+δt′)
)

} . (46')The fun
tion (43) should be normalised before �tting in order to avoid any systemati
al e�e
ts fromnonzero values of α, β and γ parameters. Here eq. (46') turns out to be really useful, as it is enough tosubstitute t′ by zero and t′ + δt′ by ∆tmax (whi
h in this 
ase is 12τS). One then obtains a number bywhi
h fun
tion (43) should be divided to be normalised to unity.6.3 Results, 
omparison with previously published (KLOE, CPLEAR)6.3.1 In�uen
e of the parameters upon the de
ay rate shapeTo 
he
k how a nonzero value of ea
h parameter separately would a�e
t the de
ay rate 
urve theFigures 17, 18 and 19 were prepared. To exaggerate the result, the numbers taken for values of theparameters are approximately an order of magnitude bigger than the ones obtained in the CPLEARexperiment [49℄. From these plots one 
an 
on
lude that the 
urve is the least sensitive to α, that allthree parameters 
an manifest themselves in the interferen
e region, and that the plateau is mostlya�e
ted by β.

Figure 17: The e�e
t of nonzero α value on the double de
ay rate shape. The bla
k 
urve is for
α = β = γ = 0 and the red for α = 10−16 GeV, β = γ = 0.6.3.2 Fits with α, β and γ parametersThree kinds of �ts were performed. First, ea
h of the three parameters was allowed to di�er fromzero with the other two parameters vanishing. Then a �t was made assuming 
omplete positivityhypothesis (α = γ, β = 0). Finally a �t with all three parameters being free was performed. Ea
h timenormalisation was left as an extra parameter. The results are summarised in Tab. 4.
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Figure 18: The e�e
t of nonzero β value on the double de
ay rate shape. The bla
k 
urve is for
α = β = γ = 0 and the red for β = 2 · 10−18 GeV, α = γ = 0.

Figure 19: The e�e
t of nonzero γ value on the double de
ay rate shape. The bla
k 
urve is for
α = β = γ = 0 and the red for γ = 10−20 GeV, α = β = 0.
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Table 4: Fit summary table.Assumption α, GeV β, GeV γ, GeV χ2/ndf Figure
β = γ = 0 (1.184 ± 0.0013) · 10−15 � � 4.30 20
α = γ = 0 � (1.26 ± 0.11) · 10−18 � 3.82 21
α = β = 0 � � (1.93 ± 0.21) · 10−20 2.02 22
α = γ, β = 0 � � (1.93 ± 0.21) · 10−20 2.02 23� (2.662 ± 0.0025) · 10−16 (−2.76 ± 0.19) · 10−18 (4.25 ± 0.21) · 10−20 1.87 24

Figure 20: Fit with 
ondition β = γ = 0.
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Figure 21: Fit with 
ondition α = γ = 0.

Figure 22: Fit with 
ondition α = β = 0.35



Figure 23: Fit with 
onditions α = γ, β = 0.

Figure 24: Fit of the fun
tion (43) to data.36



The obtained values of paraeters 
an be 
ompared with KLOE and CPLEAR results:Table 5: Comparison with previous results for the �t with all parameters free.CPLEAR [49℄ KLOE 2007 (2002 data) [7℄ This work
α (−0.5 ± 2.8) · 10−17 GeV (−10+41

−31 ± 9) · 10−17 GeV (2.662 ± 0.0025) · 10−16 GeV
β (2.5 ± 2.3) · 10−19 GeV (3.7+6.9

−9.2 ± 1.8) · 10−19 GeV (−2.76 ± 0.19) · 10−18 GeV
γ (1.1 ± 2.5) · 10−21 GeV (−0.5+5.8

−5.1 ± 1.2) · 10−21 GeV (4.25 ± 0.21) · 10−20 GeVTable 6: Comparison to previous results with α = γ, β = 0 assumption.KLOE [28℄ This work
γ = (0.7 ± 1.2stat ± 0.3syst) · 10−21 GeV γ = (4.25 ± 0.21) · 10−20 GeVOne 
an noti
e that values obtained in this analysis are generally higher than than those obtainedbefore, in some 
ases the di�eren
e is of one order of magnitude. However, these results should betreated as less signi�
ant than those from Ref. [49, 7, 28℄ for several reasons. Most importantly, the �twas performed only for the 0-12τS range, while in the KLOE analysis the range was 0-50τS , whi
h wasmade possible by a

ounting for KS regeneration on the beam pipe. What also matters is that hereonly a subset of all gathered data was used, namely the data from the year 2005. A small di�eren
ein favour of this analysis is that for the KLOE �t the integral (46) was only estimated, not obtainedanalyti
ally.While KLOE and CPLEAR experiments gave only the upper bounds for the α, β and γ values,there are also predi
tions for their lower limits. For instan
e, a predi
tion that will probably be veri�edby the KLOE-2 experiment is given in Ref. [50℄. Assuming that the so-
alled �solar neutrino problem�(de�
it of observed neutrinos from the Sun with respe
t to the theoreti
ally expe
ted amount) is onlydue to me
hanism of evolution from pure into mixed states, the authors derived:

γ ≥ 7.4 · 10−22 GeV for α < 2γ,
α ≥ 1.5 · 10−21 GeV for α > 2γ. (47)

37



7 SummaryOne of the goals of this thesis was to des
ribe the time evolution of quantum entangled kaon pairsin a way intelligible for a reader unfamiliar with the physi
s of kaons. For this reason many 
al
ulationsand examples of Fortran 
ode used in programs have been in
luded in the appendix.
CPT symmetry has not been observed to be violated. Nevertheless, several parameterisations havebeen invented that allow for its noninvarian
e for di�erent reasons. One of the ideas is that CPT mightbe violated by the evolution from pure to mixed states indu
ed by quantum gravity e�e
ts. This isespe
ially interesting, as although the 
on
ept has been known for a long time, a theory of quantumgravity still eludes us and when des
ribing it we have to rely on intuition rather than on solid theoreti
alground.An approa
h was made to analyse a subset of KLOE data for the e�e
ts of quantum gravity. Theresults obtained, although less signi�
ant than KLOE and CPLEAR ones, en
ourage further measure-ments, as they indi
ate that pre
ision expe
ted in KLOE-2 experiment may be high enough to verify atleast a fra
tion of theoreti
al predi
tions.Kaons seem to have a patent for breaking symmetries. With more and more pre
ise tests, we maysoon for the �rst time witness a violation of the CPT symmetry thanks to the KLOE-2 data. Even ifnot, this experiment is 
ertain to deepen our understanding of these fas
inating parti
les.
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A Cal
ulationsA.1 Cal
ulations for 
hapter 2A.1.1 EigenvaluesHamiltonian from eq. (5) 
an be written using expli
itly real and imaginary parts of M and Γmatri
es:
H =





ℜM11 + 1
2ℑΓ11 + i

(

ℑM11 − 1
2ℜΓ11

)

ℜM12 + 1
2ℑΓ12 + i

(

ℑM12 − 1
2ℜΓ12

)

ℜM12 − 1
2ℑΓ12 − i

(

ℑM12 + 1
2ℜΓ12

)

ℜM22 + 1
2ℑΓ22 + i

(

ℑM22 − 1
2ℜΓ22

)



We now move to equation for ∆ (11). In the CPT limit (6) H11 = H22, so ∆ is redu
ed to:
∆ = 4H12H21.We further simplify this expression by going to CP limit, whi
h means we assume that the phases of

M12 and Γ12 are the same. We 
an then write:
M12 = |M12| cosφ+ i |M12| sinφ, Γ12 = |Γ12| cosφ+ i |Γ12| sinφ.Using the above we rewrite H12 and H21:
H12 = |M12| cosφ+

1

2
|Γ12| sinφ+ i

(

|M12| sinφ− 1

2
|Γ12| cosφ

)

H21 = |M12| cosφ− 1

2
|Γ12| sinφ− i

(

|M12| sinφ+
1

2
|Γ12| cosφ

) ,so the produ
t H12H21 equals:
H12H21 = |M12|2 cos2 φ− 1

2
|M12Γ12| sinφ cosφ− i |M12|2 sinφ cosφ− i

2
|M12Γ12| cos2 φ+

+
1

2
|M12Γ12| sinφ cosφ− 1

4
|Γ12|2 sin2 φ− i

2
|M12Γ12| sin2 φ− i

4
|Γ12|2 sinφ cosφ+

+ i |M12|2 sinφ cosφ− i

2
|M12Γ12| sin2 φ+ |M12|2 sin2 φ+

1

2
|M12Γ12| sinφ cosφ+

− i

2
|M12Γ12| cos2 φ+

i

4
|Γ12|2 sinφ cos φ− 1

2
|M12Γ12| sinφ cosφ− 1

4
|Γ12|2 cos2 φIt is easy to 
he
k that the terms with sinφ cos φ 
an
el out, and what remains gives:

H12H21 = |M12|2 −
1

4
|Γ12|2 − i |M12Γ12| =

=

(

|M12|2 +
1

4
|Γ12|2

)

exp

[

−i arcsin
(

|M12Γ12|
|M12|2 + 1

4 |Γ12|2

)] .Now we 
an return to the dis
riminant ∆:
∆ = 4

(

|M12|2 +
1

4
|Γ12|2

)

exp

[

−i arcsin
(

|M12Γ12|
|M12|2 + 1

4 |Γ12|2

)] ,
√

∆ = 2

√

|M12|2 +
1

4
|Γ12|2 exp

[

− i

2
arcsin

(

|M12Γ12|
|M12|2 + 1

4 |Γ12|2

)] ,and the eigenvalues are of the form of the usual quadrati
 equation solutions:
λ± =

H11 +H22 ±
√

∆
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A.1.2 EigenstatesThe equation for eigenve
tors is of the standard form:
(

H11 − λ± H12

)





u±

w±



 = 0.From this we �nd the relation between u± and w±:
(H11 − λ±)u± +H12w± = 0 =⇒ w±

u±
=
λ± −H11

H12

CPT
==== ±

√

H21

H12In the symmetri
 limit of exa
t CP (arg Γ12
M12

= 0) we have [11℄:
H12

H21
=
M12 − i

2Γ12

M∗
12 − i

2Γ∗
12

=
M12

M∗
12

= phase fa
tor def
=== e−2iα.Using the above, the eigenve
tors are found to be:

• for λ+ we have w+ = eiαu+, so:
v+ :=





u+

w+



 = u+





1

eiα



 = u+e
iα
2





e−i
α
2

ei
α
2





• for λ− we have u− = −w−e
−iα, so:

v− :=





u−

w−



 = −w−





e−iα

−1



 = −w−e
−iα

2





e−i
α
2

−eiα
2



A.2 Cal
ulations for 
hapter 3A.2.1 |i〉 as a fun
tion of |KS〉 , |KL〉Cal
ulations presented here are rather basi
, but they are given for 
ompleteness.For the sake of brevity let us denote: α−1 :=

√

2
(

1 + |ǫS |2
), β−1 :=

√

2
(

1 + |ǫL|2
) and γ :=

1 − ǫSǫL. Using these variables we 
an rewrite (18):
|KS〉 = α

[

(1 + ǫS)
∣

∣K0
〉

+ (1 − ǫS)
∣

∣K̄0
〉] ,

|KL〉 = β
[

(1 + ǫL)
∣

∣K0
〉

− (1 − ǫL)
∣

∣K̄0
〉]From this we obtain ∣∣K0

〉 and ∣∣K̄0
〉 expressed by |KS〉 and |KL〉:
∣

∣K0
〉

=
1 − ǫL
2αγ

|KS〉 +
1 − ǫS
2βγ

|KL〉 ,
∣

∣K̄0
〉

=
1 + ǫL
2αγ

|KS〉 −
1 + ǫS
2βγ

|KL〉 ,so the initial state is:
|i〉 =

1√
2

([

1 − ǫL
2αγ

|KS (−~p)〉 +
1 − ǫS
2βγ

|KL (−~p)〉
]

·
[

1 + ǫL
2αγ

|KS (+~p)〉 − 1 + ǫS
2βγ

|KL (+~p)〉
]

+

−
[

1 + ǫL
2αγ

|KS (−~p)〉 − 1 + ǫS
2βγ

|KL (−~p)〉
]

·
[

1 − ǫL
2αγ

|KS (+~p)〉 +
1 − ǫS
2βγ

|KL (+~p)〉
]) .40



It is easy to see that the terms with produ
ts |KS (+~p)〉 |KS (−~p)〉 and |KL (+~p)〉 |KL (−~p)〉 
an
el out,so the above equation gives:
|i〉 =

1

4
√

2αβγ2
{[(1 + ǫL) (1 − ǫS) + (1 − ǫL) (1 + ǫS)] |KS (+~p)〉 |KL (−~p)〉+

− [(1 + ǫS) (1 − ǫL) + (1 − ǫS) (1 + ǫL)] |KL (+~p)〉 |KS (−~p)〉} =

=
1

4
√

2αβγ2
{2γ |KS (+~p)〉 |KL (−~p)〉 − 2γ |KL (+~p)〉 |KS (−~p)〉} =

=
1

2
√

2αβγ
{|KS (+~p)〉 |KL (−~p)〉 − |KL (+~p)〉 |KS (−~p)〉}Therefore we 
an write:

|i〉 =
N√
2
{|KS (+~p)〉 |KL (−~p)〉 − |KL (+~p)〉 |KS (−~p)〉}where N , N = (2αβγ)−1, written in original variables ǫS , ǫL is:

N =

√

2
(

1 + |ǫS |2
)

√

2
(

1 + |ǫL|2
)

2 (1 − ǫSǫL)
=

√

(

1 + |ǫS|2
)(

1 + |ǫL|2
)

1 − ǫSǫL
≈ 1.A.2.2 Double de
ay rate I (f1, t1; f2, t2)We want to obtain eq. (26). We have:

I (f1, t1; f2, t2) = A (f1, t1; f2, t2)A
∗ (f1, t1; f2, t2) =

=
|N |2

2

{

〈f1 |T |KS〉 〈f2 |T |KL〉 〈f1 |T |KS〉∗ 〈f2 |T |KL〉∗ e−ΓSt1−ΓLt2+

+ 〈f1 |T |KL〉 〈f2 |T |KS〉 〈f1 |T |KL〉∗ 〈f2 |T |KS〉∗ e−ΓLt1−ΓSt2+

− 〈f1 |T |KS〉 〈f2 |T |KL〉 〈f1 |T |KL〉∗ 〈f2 |T |KS〉∗ ei(mL−mS)t1−i(mL−mS)t2e−
ΓS
2

(t1+t2)−
ΓL
2

(t1+t2)+

− 〈f1 |T |KL〉 〈f2 |T |KS〉 〈f1 |T |KS〉∗ 〈f2 |T |KL〉∗ e−i(mL−mS)t1+i(mL−mS)t2e−
ΓS
2

(t1+t2)−
ΓL
2

(t1+t2)
}

=

=
|N |2

2

{

|〈f1 |T |KS〉 〈f2 |T |KL〉|2 e−ΓSt1−ΓLt2 + |〈f1 |T |KL〉 〈f2 |T |KS〉|2 e−ΓLt1−ΓSt2+

− 〈f1 |T |KS〉 〈f2 |T |KL〉 〈f1 |T |KL〉∗ 〈f2 |T |KS〉∗ ei∆m(t1−t2)e−
ΓS+ΓL

2
(t1+t2)+

− 〈f1 |T |KL〉 〈f2 |T |KS〉 〈f1 |T |KS〉∗ 〈f2 |T |KL〉∗ e−i∆m(t1−t2)e−
ΓS+ΓL

2
(t1+t2)

}

=

=
|N |2

2

(

∣

∣

∣

∣

〈f1 |T |KS〉 〈f2 |T |KS〉
〈f2 |T |KL〉
〈f2 |T |KS〉

∣

∣

∣

∣

2

e−ΓSt1−ΓLt2 +

+

∣

∣

∣

∣

〈f1 |T |KL〉
〈f1 |T |KS〉

〈f1 |T |KS〉 〈f2 |T |KS〉
∣

∣

∣

∣

2

e−ΓLt1−ΓSt2+

− 〈f1 |T |KS〉 〈f1 |T |KS〉∗
〈f1 |T |KL〉∗
〈f1 |T |KS〉∗

〈f2 |T |KS〉∗ 〈f2 |T |KS〉
〈f2 |T |KL〉
〈f2 |T |KS〉

· ei∆m(t1−t2)e−
ΓS+ΓL

2
(t1+t2)+

− 〈f1 |T |KL〉
〈f1 |T |KS〉

〈f1 |T |KS〉 〈f1 |T |KS〉∗ 〈f2 |T |KS〉 〈f2 |T |KS〉∗
〈f2 |T |KL〉∗
〈f2 |T |KS〉∗

· e−i∆m(t1−t2)e−
ΓS+ΓL

2
(t1+t2)

)

=

=
|N |2

2
|〈f1 |T |KS〉 〈f2 |T |KS〉|2 ·

(

∣

∣

∣

∣

〈f2 |T |KL〉
〈f2 |T |KS〉

∣

∣

∣

∣

2

e−ΓSt1−ΓLt2 +

∣

∣

∣

∣

〈f1 |T |KL〉
〈f1 |T |KS〉

∣

∣

∣

∣

2

e−ΓLt1−ΓSt2 +

−
[(〈f1 |T |KL〉

〈f1 |T |KS〉

)∗ 〈f2 |T |KL〉
〈f2 |T |KS〉

ei∆m(t1−t2) +
〈f1 |T |KL〉
〈f1 |T |KS〉

(〈f2 |T |KL〉
〈f2 |T |KS〉

)∗

e−i∆m(t1−t2)

]

e−
ΓS+ΓL

2
(t1+t2)

)41



It is now 
onvenient to de�ne C12 and ηi, see eqs. (27) and (28). Using these quantities we 
an write:
I (f1, t1; f2, t2) = C12

{

|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2 +

−
[

|η1| e−iφ1 |η2| eiφ2ei∆m(t1−t2) + |η1| eiφ1 |η2| e−iφ2e−i∆m(t1−t2)
]

e−
ΓS+ΓL

2
(t1−t2)

}

=

= C12

{

|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2 +

− |η1| |η2|
[

ei[∆m(t1−t2)+φ2−φ1] + e−i[∆m(t1−t2)+φ2−φ1]
]

e−
ΓS+ΓL

2
(t1−t2)

}

=

= C12

{

|η1|2 e−ΓLt1−ΓSt2 + |η2|2 e−ΓSt1−ΓLt2 +

− 2 |η1| |η2| e−
ΓS+ΓL

2
(t1−t2)
os [∆m (t1 − t2) + φ2 − φ1]

} ,where we have used the fa
t that cosα = eiα+e−iα

2 .A.2.3 Double de
ay rates I (f1, f2,∆t)Our starting point is eq. (26). Substituting t = t1 + t2, ∆t = t1 − t2; t1 = t+∆t
2 , t2 = t−∆t

2we obtain:
I (f1, f2, t,∆t) = C12

{

|η1|2 e−ΓL
t+∆t

2 e−ΓS
t−∆t

2 + |η2|2 e−ΓS
t+∆t

2 e−ΓL
t−∆t

2 +

− 2 |η1| |η2| e−
ΓS+ΓL

2
t
os [∆m∆t+ φ2 − φ1]

}

=

= C12

{

|η1|2 e−
ΓL
2
te−

ΓL
2

∆te−
ΓS
2
te

ΓS
2

∆t + |η2|2 e−
ΓS
2
te−

ΓS
2

∆te−
ΓL
2
te

ΓL
2

∆t+

− 2 |η1| |η2| e−
ΓS+ΓL

2
t
os [∆m∆t+ φ2 − φ1]

}

=

= C12

{

|η1|2 e−
ΓL+ΓS

2
te−

ΓL−ΓS
2

∆t + |η2|2 e−
ΓS+ΓL

2
te

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| e−
ΓS+ΓL

2
t
os [∆m∆t+ φ2 − φ1]

}

=

= C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| 
os [∆m∆t+ φ2 − φ1]
}

e−
ΓL+ΓS

2
t.Sin
e we want to get rid of the dependen
e on t = t1 + t2, we integrate the last equation in thisvariable. We observe that for non-negative numbers t1, t2 su
h that t1 ≥ t2 we always have t1+t2 ≥ t1−t2and similarly we have t1 + t2 ≥ |t1 − t2| for t1 ≤ t2. So if we divide this integral into two parts, oneof them satysfying the 
ondition ∆t ≥ 0 and the other ∆t ≤ 0, the lower limits will be ∆t and |∆t|respe
tively and in�nity will be the upper limit in both 
ases.The Ja
obian matrix for transformation from t1, t2 to t, ∆t 
oordinates is:

jac (t1,t2 → ∆t,T ) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂t1
∂T

∂t1
∂∆t

∂t2
∂T

∂t2
∂∆t

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.Knowing that t1 = t+∆t
2 and t2 = t−∆t

2 and performing simple 
al
ulations we get jac (t1,t2 → ∆t,t) = 1
2 .Taking that into a

ount we 
an �nally write:
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• for ∆t ≥ 0:
I (f1, f2,∆t ≥ 0) = jac (t1,t2 → ∆t,t) · ∞

∫

∆t

I (f1, f2,∆t, t) dt =

=
1

2

∞
∫

∆t

C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| 
os [∆m∆t+ φ2 − φ1]
}

e−
ΓL+ΓS

2
tdt =

=
1

2
C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| 
os [∆m∆t+ φ2 − φ1]
}

∞
∫

∆t

e−
ΓL+ΓS

2
tdt =

=
1

2
C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| 
os [∆m∆t+ φ2 − φ1]
}

·
[

− 2

ΓL + ΓS
e−

ΓL+ΓS
2

t

]t=∞

t=∆t

=

=
1

2
C12

{

|η1|2 e−
ΓL−ΓS

2
∆t + |η2|2 e

ΓL−ΓS
2

∆t+

− 2 |η1| |η2| 
os [∆m∆t+ φ2 − φ1]
}

· 2

ΓL + ΓS
e−

ΓL+ΓS
2

∆t =

=
C12

ΓS + ΓL

{

|η1|2 e−ΓL∆t + |η2|2 e−ΓS∆t+

− 2 |η1| |η2| e−
ΓS+ΓL

2
∆t
os [∆m∆t+ φ2 − φ1]

},
• similarly for ∆t ≤ 0:

I (f1, f2,∆t ≤ 0) = jac (t1,t2 → ∆t,t) · ∞
∫

|∆t|

I (f1, f2,∆t, t) dt =

=
1

2
C12

{

|η1|2 e−
ΓL−ΓS

2
·(−|∆t|) + |η2|2 e

ΓL−ΓS
2

·(−|∆t|)+

− 2 |η1| |η2| 
os [∆m∆t+ φ2 − φ1]
}

·
[

− 2

ΓL + ΓS
e−

ΓL+ΓS
2

T

]t=∞

t=|∆t|

=

=
C12

ΓS + ΓL

{

|η1|2 e
ΓL−ΓS

2
|∆t| + |η2|2 e

ΓS−ΓL
2

|∆t|+

− 2 |η1| |η2| 
os [−∆m |∆t| + φ2 − φ1]
}

e−
ΓL+ΓS

2
|∆t| =

=
C12

ΓS + ΓL

{

|η1|2 e−ΓS |∆t| + |η2|2 e−ΓL|∆t|+

− 2 |η1| |η2| e−
ΓL+ΓS

2
|∆t|
os [∆m |∆t| + φ1 − φ2]

}

.
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B Fortran 
odeB.1 Plotting a normalised fun
tionfun
tion wfnorma(dt)real gkl,gks,gav,dg,taus,taul,hbar,dm,dfreal alpha,beta,gammareal rl,eta,wu,iks,igr,zet,dtmreal part1,part2,part3,part4,part5real np1,np2,np3,np4,np5,normhbar=6.58211915taus=0.8958taul=511.6dm=0.529*hbart

=taus/hbargks=hbar/tausgkl=hbar/tauldg=gks-gklgav=(gks+gkl)/2alpha=0.0beta=0.00gamma=0.0000pi=4.*atan(1.)eta=0.002232phi1=43.51*pi/180phi2=atan(2*dm/dg)df=phi1-phi2dvar=sqrt(dm**2+0.25*dg**2)rl=eta**2+gamma/dg+4*beta/dg*eta/(dvar**2)& *(dm*dg*
os(phi1)+(dm**2)& *sin(phi1)-0.25*(dg**2)*sin(phi1))igr=gav+alpha-gammaiks=igr+gkswu=8*beta/(dvar*eta*(iks**2+dm**2))zet=rl/(gav*eta**2)C maximal delta t value:dtm=50.part1=zet*(exp(-gks*dt*t

)+exp(-gkl*dt*t

))part2=-2/igr*
os(dm*dt*t

)*exp(-igr*dt*t

)part3=wu*(iks*sin(dm*t

*dt+df)& +dm*
os(dm*t

*dt+df))*exp(-igr*t

*dt)part4=wu*(iks*sin(df)+dm*
os(df))*exp(-gks*t

*dt)44



part5=-2/gks*(gamma/(dg*eta**2)+2*beta/(dvar*eta)& *sin(phi1)/
os(phi2))*exp(-gks*t

*dt)np1=zet*(1/(gks*t

)*(1-exp(-gks*dtm*t

))& +1/(gkl*t

)*(1-exp(-gkl*dtm*t

)))np2=-2/(igr*(igr**2+dm**2)*t

**2)& *(igr*t

+exp(-igr*dtm*t

)& *(dm*t

*sin(dm*dtm*t

)-igr*t

*
os(dm*dtm*t

)))np3=wu*iks/((igr*t

)**2+(dm*t

)**2)& *(igr*t

*sin(df)+dm*t

*
os(df)-exp(-igr*t

*dtm)& *(igr*t

*sin(dm*t

*dtm+df)+dm*t

*
os(dm*t

*dtm+df)))np4=wu*(iks*sin(df)+dm*
os(df))/(gks*t

)& *(1-exp(-gks*t

*dtm))np5=-2/(t

*gks**2)*(gamma/(dg*eta**2)+2*beta/(dvar*eta)& *sin(phi1)/
os(phi2))*(1-exp(-gks*t

*dtm))norm=np1+np2+np3+np4+np5wfnorma=(part1+part2+part3+part4+part5)/normreturnendB.2 FittingFitting was done in PAW (Physi
s Analysis Workstation). Examples of fortran and kuma
 �les arebelow.B.2.1 Fortran �lefun
tion fitnorma(dt)parameter(nbin=50)real teo(nbin),eff(nbin),taul,dtmreal rl,eta,gks,gkl,dg,dm,gav,pi,dvarreal help,help1,t

,hbar,phi1,phi2,df,tausreal np1,np2,np3,np4,np5,normve
tor smearve
tor nnbinve
tor effi
ommon/pawpar/par(4)pi=4.*atan(1.)hbar=6.58211915taus=0.8958taul=511.6t

=taus/hbargks=hbar/taus 45



gkl=hbar/tauldg=gks-gklgav=(gks+gkl)/2dm=0.529*hbarphi1=43.51*pi/180phi2=atan(2*dm/dg)df=phi1-phi2eta=0.002232dvar=sqrt(dm**2+0.25*dg**2)rl=eta**2+par(4)/dg+4*par(3)/dg& *eta/(dvar**2)*(dm*dg*
os(phi1)& +(dm**2)*sin(phi1)-0.25*(dg**2)*sin(phi1))igr=gav+par(2)-par(4)iks=igr+gkswu=8*par(3)/(dvar*eta*(iks**2+dm**2))zet=rl/(gav*eta**2)C maximal delta t value:dtm=12.np1=zet*(1/(gks*t

)*(1-exp(-gks*dtm*t

))& +1/(gkl*t

)*(1-exp(-gkl*dtm*t

)))np2=-2/(igr*(igr**2+dm**2)*t

**2)& *(igr*t

+exp(-igr*dtm*t

)& *(dm*t

*sin(dm*dtm*t

)-igr*t

*
os(dm*dtm*t

)))np3=wu*iks/((igr*t

)**2+(dm*t

)**2)& *(igr*t

*sin(df)+dm*t

*
os(df)-exp(-igr*t

*dtm)& *(igr*t

*sin(dm*t

*dtm+df)+dm*t

*
os(dm*t

*dtm+df)))np4=wu*(iks*sin(df)+dm*
os(df))/(gks*t

)& *(1-exp(-gks*t

*dtm))np5=-2/(t

*gks**2)*(gamma/(dg*eta**2)+2*beta/(dvar*eta)& *sin(phi1)/
os(phi2))*(1-exp(-gks*t

*dtm))norm=np1+np2+np3+np4+np5binw=50./nbinnnbb=nnbin(1)write(6,*)(par(i),i=1,4)nowa=0.aidt=0.i=int(dt/binw)+1do j=1,nbinif(smear(j,i).gt.0) thendt1=binw*(j-0.5)teo(j)=& par(1)/norm 46



& *(rl/(gav*eta**2)*(1/(gks*t

)*(exp(-gks*t

*(j-1))& -exp(-gks*t

*j))+1/(gkl*t

)*(exp(-gkl*t

*(j-1))& -exp(-gkl*t

*j)))& -2/(igr*(igr**2+dm**2)*t

**2)& *(exp(-igr*t

*j)*(dm*t

*sin(dm*t

*j)-igr*t

& *
os(dm*t

*j))-exp(-igr*t

*(j-1))*(dm*t

& *sin(dm*t

*(j-1))-igr*t

*
os(dm*t

*(j-1))))& +wu/((igr**2+dm**2)*t

**2)& *(iks*(exp(-igr*t

*(j-1))*(igr*t

& *sin(dm*t

*(j-1)+df)+dm*t

*
os(dm*t

*(j-1)+df))& -exp(-igr*t

*j)*(igr*t

*sin(dm*t

*j+df)& +dm*t

*
os(dm*t

*j+df)))& +dm*(exp(-igr*t

*(j-1))*(igr*t

& *
os(dm*t

*(j-1)+df)-dm*t

*sin(dm*t

*(j-1)+df))& +exp(-igr*t

*j)*(-igr*t

*
os(dm*t

*j+df)& +dm*t

*sin(dm*t

*j+df))))& +wu/(gks*t

)*(iks*sin(df)+dm*
os(df))& *(exp(-gks*t

*(j-1))-exp(-gks*t

*j))& -2/(t

*gks**2)*(par(4)/(dg*eta**2)& +2*par(3)/(dvar*eta)*sin(phi1)/
os(phi2))& *(exp(-gks*t

*(j-1))-exp(-gks*t

*j)))aidt=aidt+effi(j)*smear(j,i)*teo(j)endifend dofitnorma=aidtreturnendB.2.2 Kuma
 �lefor/fil 67 fitnorma.psopt nstaopt fitset fit 1111111111h/fil 1 tt.hbookset h
ol 1set mtyp 20k=50ve/
re nnbin(1) r 4|ve/
re tmax(1) r 30ve/
re tmax(1) r 12ve/
re smear([k℄,[k℄) rve/rea smear newsmear_
hi15_1ts_full.datve/
re effi([k℄) r|ve/rea effi ./neweff/eff_
hi15_0.25ts.txtve/rea effi eff_
orr_
hi15_1ts_full.txtve/
re par(4) r 120000. 0. 0. 0.ve/
re step(4) r 300 0.0000001 0.0000001 0.0000001ve/
re pmin(4) r 5000. -9.4 -0.4 -0.4ve/
re pmax(4) r 200000. 10.0 0.4 0.4 47



ve/
re errpar(4) rh/fit 118(0.:12.) fitnorma.f SBLE 4 par step pmin pmax errparh/plo 118(0.:12.) egraphi
s/hplot/atitle '[D℄t, [t℄?S!' 'number of events'meta 0
lose 67
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