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Abstract

Investigations of the time interval distributions between the decays
of quantum entangled neutral kaons

Since their discovery, kaons have unabatedly attracted interest of particle physics researchers.
As the lightest flavoured particles, they offer an excellent possibility of testing discrete symme-
tries. KLOE experiment at DAPNE facility in Frascati (Italy) stands out among others. It
allows to reach incomparable precision in C'PT symmetry and quantum mechanics tests.

KLOE owes its uniqueness to the fact that DA®NE produces neutral kaons in quantum
entangled pairs. In this work a detailed derivation of formulae for double decay rate from the
initial two kaons state is presented. The results are then applied to specific final states. Emphasis
is given to connection between the decay intensities and symmetries.

Although there has been no evidence of C'PT symmetry breaking, several parameterisations
have been proposed where this symmetry is not fundamental and thus can be violated. One
of these ideas is the C'PT noninvariance due to evolution of pure into mixed states induced
by quantum gravity effects, which at the same time happens to be inconsistent with quantum
mechanics. This concept is shortly presented.

A subset of KLOE data is analysed for the symptoms of decoherence caused by the afore-
mentioned mechanism. For reasons referred to in the text the results obtained in this work are
less significant than those from KLOE analysis, nonetheless their orders of magnitude indicate
the expediency of further measurements.
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1 Introduction

Kaons (also called K mesons) are the lightest particles containing a strange quark, s, apart from the
most common quarks u (up) or d (down), and for this reason their potential for testing fundamental
physics laws was realised almost from the moment of their discovery. The behaviour of charged kaons
served as an inspiration for Lee and Yang to propose experiments testing parity conservation [1]. Neutral
kaons were particles for which C'P |2]| and T [3] violations were first observed. Then it should not come
as a surprise that they are promising candidates in the search of C'PT noninvariance.

CPT symmetry is a combination of three discrete symmetries: P— parity, C'— charge conjugation
and T'— time reversal, and although P, C' and T have all been shown to be violated individually, C' PT
symmetry seems to remain intact. It was shown by Pauli [4] to hold for any quantum field theory and
for any order of the C', P and T transformations under very basic assumptions: Lorentz invariance,
unitarity (conservation of probability) and locality. There was an earlier, but less general proof by
Liiders [5].

This work deals with a system of two neutral kaons produced in a ¢ meson decay. Such pairs are
produced at DA®NE, Frascati ¢-factory. A system of two neutral kaons has been called one of the
most intriguing in nature for quite a long time [6, 7| and it is definitely worth investigating into, and
not only because it allows testing symmetries. The necessity to conserve parity and charge conjugation
eigenvalues in ¢ decays leads to expressions which straightforwardly suggest quantum mechanics tests
through the phenomenon called quantum entanglement.

The goal of this thesis is to show how, starting from very basic assumptions, one can deduce about
neutral kaons system properties basing on the time intervals between the decays of quantum entangled
kaons. This is done on a more basic level than usually presented in papers, hence it allows even a reader
who is less familiar with the subject to follow the arguments. In case of doubts, many calculations are
included in the appendix.

The other topic considered, which also is of great interest, is the analysis of possible C' PT symmetry
and quantum mechanics violation in the neutral kaons system. Among sources proposed to possibly
lead to this yet unobserved violations is the evolution of pure states into mixed states. A suitable
parameterisation of double decay rates and results of analysis of KLOE data from the year 2005 are
presented. However, results obtained in this work should not be compared directly to KLOE ones, as
there were differences in the fitting methods used. These differences will be emphasized in the text.



2 Neutral kaons system

2.1 Hamiltonian

At the moment of production, neutral kaon is a superposition of K° and K states:
|K (0)) = a(0)|K") +b(0)|K), (1)
while its time evolution can be described as:

K (1)) = a(t)[K°) +b(t) |[K°) +ZC] )i (2)

where the sum is over all final states |f;) a kaon may decay to. As the functions a and b are time-
dependent, it follows from this formula that a neutral kaon can oscillate between |K 0> and |I_( 0> states,
which in fact happens with a frequency of about 5.3 GHz, being a second-order weak process with
strangeness change |AS| = 2. Phenomenology of the neutral kaons system is successfully described by
the Wigner-Weisskopf approximation [8]. Although studies of possible deviations from this approxi-
mation have been performed, further tests are desirable as the effects that are searched for in K0-K°
complex are very tiny [9]. With the help of Wigner-Weisskopf approximation one finds that the functions
a(t) and b(t) obey the Schrodinger-like equation with effective Hamiltonian H [7]:

.0 (a(t)\ _ a(t)

(i ) =r (5 ) ®)
Let us denote ¢ = e~y with 19 = (¢ = 0). Since the kaons decay, we have the condition 0 > d';@' ,
and by writing the wave function more explicitly we obtain:

T A A
0> (1; ¢) _1/}1' Ccl;f w w 1/}1‘ ( ) —thwO + wgiHTGZHHw — (4)
= — iyt (H—H*) "

so clearly H is not hermitian. However, in general any complex matrix can be divided into its hermitian
and antihermitian parts. In this particular case we write:

) Mll Mlg ) l ( I\11 Fl? >
H=M--T=( ! — 2! : 5
2 ( My Mo Iy T2 ©)

where M and I are hermitian and are called mass and decay matrices, respectively. Elements M;; and

I'11 can be associated with K, while My and I'sp can be linked with K°. It should be expected that

the decay part leads to exponential damping, hence the minus sign and the factor % (the dependence
iBt —i(m—il/2)t _ ,—imt,—Tt/2 Ity

on time will be of the usual form 1) ~ e7**' = ¢ e , SO W!Z ~e

2.2 Symmetries

In this section connection between symmetries in the neutral kaons system and Hamiltonian matrix
elements is discussed.
2.2.1 CPT

One of the consequences of the CPT theorem is that masses and widths of particles and their
antiparticles are the same, so in this case mygo = mpgo and I'ko = I'go. In addition to this, CPT
symmetry ensures that probabilities of transitions K — K° and K — K° at a given time are the
same. For Hamiltonian matrix (5) this implies:

CPT: My = My, ' =Tay; Hyy = Hoo. (6)



222 T

Symmetry with respect to time reversal implies that transitions K — K° and K — K° at a
given time have the same probabilities. In the Hamiltonian matrix (5) elements responsible for these
transitions are Hqi9 and Hsy. Therefore we have:

T : ‘Hu’ - ‘H21’- (7)

223 CP

An additional hierarchy among the symmetry violations is introduced by quantum mechanics for a
two-state systems: the detection of a violation of the CPT or (and) of the T" symmetry implies a CP
symmetry violation [10]. Hence we have:

CP: H11 = H22 and ’Hu’ = ’H21’- (8)

2.3 Eigenvalues, eigenstates

The equation for eigenvalues of the Hamiltonian is generic (for slightly richer calculations used for
this section refer to A.1.1):
det(H— A1) =0, 9)

from which it is straightforward to obtain:
AN — X (Hyy + Ha) + Hy1Hag — HyaHay = 0. (10)
From the equation above one finds the discriminant:
A = (Hyy — Hy)? + 4Hy9Hoy. (11)

From this we find the eigenvalues of H in the limit of CP and CPT (refer to section A.1.1 for more

details):
1 CPT
Ay = 3 <H11 + Hoo + 4H12H21> == Hu + v Hi2Ha, (12)

where the square root, written explicitly in terms of Mo and I'ys, is:

1 ] MioT
v/ HioHo1 = \/\Mu‘? + 1 \F12’2exp [—% arcsin ( [ M1 )] ) (13)

|Mia|* + 1 |Tp2f?

Having the eigenvalues we proceed to calculate the eigenstates of H (slightly richer calculations are
included in section A.1.2). Equation for eigenstates is generic:

Hyp— At Hyo >
=0. 14
( Hy, Hyy— s ) (14)

If one defines:
: H
Vg def ( Ut > and e~ 2ic def —12,
W4 Hoq

the eigenvectors can be shown to be of the form:

(15)

10



One can note that v and v_ are C P—even and C'P—odd, respectively [11]. Therefore by continuity

we identify:

vy = |Kg),

v_ = |Kr);

The short- and long-lived |Kg) and |Kp) states are commonly expressed as:

|Ks) =

|KL) =

1
2 (1 + |eS|2>
T N
2 (1 + ]eL]2>

[(1+es) [K%) + (1 —es) [K°)]

(14 €e0) |[K°) — (1 —€r) |K?)] .

(16)
(17)

(18)

Additional information about the mass difference between these particles, their mean lifetimes and
main decay modes is provided in Tab. 1. In the equations above eg and e are small (of the order
1073), complex parameters measuring C'P violation for Kg and K. Another pair of parameters can

be equivalently defined:

€s + €L
2 )
€S — €L
5

!
Il

(e
Il

(19)

(20)

€ informs about average C'P violation for neutral kaons, while ¢ is a C PT-violating parameter which

will be useful later.

Table 1: Selected information about Kg and K, particles. The data are extracted from [12].

Parameter

Kgs

Ky,

lifetime

(89.58 + 0.05) ps

(51.16 £ 0.20) ns

mass difference, m; — mg

(3.4819 4 0.0099)-1076 eV

main decay modes, I';/T’

7tr~  0.6920 + 0.0005
%70 0.3069 £ 0.0005
atr=y (1.79 4+ 0.05)-1073
teFu, (7.0440.08)-1074

m*uFy, (4.69 £0.05)-1074

7feFr,  0.4055 + 0.0012
muFy, 0.2704 £ 0.0007
370 0.1952 + 0.0012

ata= 7% 0.1254 4 0.0005
ntr~ (1.966 & 0.010)-1073

7070 (8.65 4+ 0.06)-10~4

11



3 Final states amplitudes for ¢ — K°K0 — £, f;

At KLOE, neutral kaons are produced in ¢ meson decay, J¥¢ = 17—, with a 33.8% probability (for
the list of the main ¢ decay modes, see Tab. 2).

Table 2: Main ¢ decay modes.

Decay mode | Branching ratio (%) [12]
KTK~ 49.1
KOKO 33.8
pr +rtr 0 15.6
ny 1.26

To conserve the eigenvalues of P and C, the (normalized) initial state of the two kaons, written in
the ¢ rest frame, has to be:

i) = %{!KO(—W RO (+7) — | R (=) | K° (+5))}- (21)

It is easy to show that C'|i) = —|i) and P |i) = — |i), as required.

We can change the basis of strangeness eigenstates (suitable for the description of kaon pair produc-
tion), {|K 0> , |f( 0>}, to the basis of Hamiltonian eigenstates suitable for the description of the decays,
{|Ks),|Kr)} (refer to A.2.1 for precise calculations):

i) = %{!Ks (+9)) |KL (=p)) — | KL (+D)) [ Ks (D) }, (22)
where
1+ les?) (1 + |ez)?
N:\/( S>( L)%l (23)
1 —egeg,

is a normalization factor.

Given eq. (22), one can calculate a general formula for the double decay rate of the initial two kaons
state, which will be done in the following section. Later a specific case of two identical final states is
discussed (section 3.2), and finally two (out of many) interesting examples of different final states are
presented in section 3.3.

3.1 General case

Following quantum mechanics rules, the decay amplitude of the two kaons state (22) into final states
f1 and fo at times £; and t5 and momenta +p and —p, respectively, can be expressed as:

A(frotss fots) = %{m IT| Ks (42)) {f2 |T| KL (t2)) +
AT KL (0)) (2 IT] K (82))) =

— %{m T Ks) (fa |T| Kp) e~ Pstemirta g

—(fi|T|KL) (f2|T| Kg) e tttemiAst2) =
= S ITIKs) (fo || gy e mstre st gimate it

V2

. <f1 ’T‘ KL> <f2 ’T‘ KS> e_imLtle_%FLtle_imShe—%FSh},

(24)

where T is an operator whose explicit form is unknown, but also not needed here.

12



The complex conjunction of this amplitude reads:

N " % i 1 . 1
<f1 ’T‘ KS> <f2 ‘T‘ KL> ezmstle %I‘StlesztQG ;I‘Ltg_i_

{
V2 (25)
— (AITIEL) (fo|T| K" emrtremal hemstzemalsty,

A" (fi,t1; fa, t2) =

The double decay rate of the two kaons into f; and f5 correspondingly at times t; and t3 can now
be calculated (detailed calculations can be found in A.2.2):

I(fi,t1; fosto) = [A(f1,t0; fo, t2) [P = A (frotas fo, to) A" (fr,t; fo, to) =

— 012{’771’2 e~ Trti—Tsta + ’772’2 e—Fst1—FLt2+

Te+I (26)
— 2| el e” 7 B cos [Am (8 — ) + d2 — d1]},

where we have denoted:

N 2
O =B 4 11 ) (1o 111 K5 P (27)
and introduced decay amplitude ratios 7;:
e = (il TIKr) 2
e = ) >

Experimental data may be easier to compare with one-dimensional time distributions, when differ-
ence At = t1 — ty is used instead of decay times t; and to. To find the At distribution it is necessary
to change variables to ¢ = t1 + t5 (the simplest choice) and At and then integrate the obtained formula
over ¢ (see A.2.3 for additional comments and calculations). The results for positive and negative At
are as follows:

Ci2 2 _I'iAt 2 _TgAt
- = 117 e L + o e S +
FSJFFL{M ! |72 (29)
4T

T
—2|m| |2l e” = Aleos [AmAL + ¢o — 1]},

I(f1, f2, At > 0) =

Cr2 2 —Tg|At] 2 -T|A
- = e S + e L +
2 {lm ] )

_I'p+ls
— 2| |z e 77 Alcos [Am At + ¢1 — ¢o]}-

I(fl’f2aAt < 0) =

3.2 Identical final states

In the case when final states f; and fy are the same, eqs. (29) and (30) are significantly simplified.
Straight from eq. (28) we have n; = 12, so in particular |n;| = |n2] and ¢1 = ¢2. Egs. (29) and (30)
become:

I(fi=fe, At 20)=1I(f1=f2,At <0) =
(31)

= M{e—hlml + e TslAtl _ 9= 5L A cos (Am |At])}
Fs+T1y
where eta’s subscript is omitted for simplicity. It is clear that function I is even in At. It is also visible
that the shape of the curve I does not depend on the choice of final states as long as they are the same.
There are two regions of particular interest. The first one, around 4rg, is the most sensitive to Am
value, as presented in Fig. 1 on page 14. The second one is close to At = 0. We easily see that:

_ Cilyf

I(fi=f2,At=0)= Ts T

{1+1-2}=0.

Therefore, for identical final states, no events are expected in At = 0 within the scope of quantum
mechanics. Decays to identical final states are described further in chapter 4.

13



I,a.u.

1.2 —

i T S S S S S A A A i

P I
6] 2 4 8 8 10 12 14 16 18 20
At, Tg

Figure 1: Double decay rate as a function of At for identical final states. The solid curve is for current
Am value, while the dashed line is for Am 10% bigger. It can be seen that the most sensitive region
for Am is around the interference peak (~ 47g).

3.3 Other useful final states
3.3.1 Double semileptonic final state

We proceed to discuss a situation, in which both kaons decay via semileptonic channel, but to
different final states. This means that the products of the decay are 771~ and 7~ ITv, where [ can be
either an electron (positron) or a muon.

d > d d - d
K’ n K’ no
S u S —» £ »— U
W™ w
e” v et v

(a) (b)

Figure 2: Feynman diagrams for semileptonic K° (a) and K° (b) decays. In the first order, K° can
decay to m+e~ 7, but not to 7"etv, and vice versa for K.

It will be useful to show that in semileptonic decays neutral kaons obey a AS = AQ rule, where
AS is the difference of strangeness between final and initial state, and AQ is the difference of charge,
but only between particles interacting strongly - in this case between a pion and a kaon (obviously,
considering the whole reaction, the charge is conserved). This can be explained basing on Feynman
diagrams for these processes. Let us consider KO first (Fig. 2a). It consists of two quarks, d and s. We
assume that quark d survives, while quark s decays weakly into quark u by emitting a W~ boson. Then

14



quarks d and u form a positive pion 7T, and W~ decays into [~7. Note that 7~ cannot be created
in this decay (at least with the same mechanism). Hence, it is eligible to assume that K° decays into
7t v, and not into 771 v. Analogous arguments lead us to the result, that K° decays into 7~ [Tv
(corresponding diagram is presented in Fig. 2b).
A common convention is to define amplitudes for semileptonic decays obeying AS = AQ rule as
follows:
(n UMV |T|K°) = a+0, (rt17D|T|K°) = a* — b (32)

and for processes violating AS = AQ rule in a similar way:
(T v |T|K°) = c+d, (r=1tv|T| X0> =" —d". (33)

The CPT invariance requires the equality of the probabilities for a kaon and an antikaon to develop
into themselves [10]. Hence, a nonzero value of parameter b or d would imply C'PT violation. Three
new parameters can be introduced:

&

Y : T - (34)

C*
Ty = —
’ a

a
Parameter y measures C'PT violation in processes obeying the AS = AQ rule, whilst z and z_ measure

AS = AQ rule violation in processes conserving and violating CPT transformation, respectively. To
obtain parameters 7+ and n;- for semileptonic decays, we first combine eqgs. (18), (28), (32) and (33).

(70T Ks) = ——teee [(1 + ) (a + b) + (1 — €5) (¢ — )],
2 <1 + ’65‘2)

(r 1 [T| ) = —mee [ ez) (a - B) — (1= ez) (¢ — ")
2 <1 + ]eL\2>

(T DT Ks) = —mteeee [(1 — ) (a" = %) + (1 + €5) (e + )],
2 <1 + |eS|2)

(P BT KL = i [(1—ep) (@ — %) — (1 + ep) (c + d)].

2 (1+ e f?)

Let us assume that AS = AQ rule holds. We now calculate parameters 7+ and 7;- for semileptonic
decays:

(n~ITv|T| K1) 1+ es)® 14eg
= = . ~1 - (14€e)(1—€eg)=14er—€eg=1—26,
" T Ks) 1+eg* 1+es (tew) (1 =es) b (35)
(mtl- v |T| K1) 1+ les]> 1—ep
- = — = - . ~1l-(eg—1)(14+es)~—-1+¢€ —eg=—1-—24.
K (rtl—v|T| Kg) 1+’€L‘2 1—eg ( ) ( )
For completeness, the general formulae are given by [7]:
=1-20 224 —2z_,
i+ + (36)

m- = —1—20 + 227 — 227" .

The plot of decay intensity for final states f; = 7 I7v and fo = 771" is shown in Fig. 3. The
distributions are for § = 0 (red line) and for § = 5-10~% 4 0.05i (blue line).

15
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decay rate, a.u.

(2%

25

035 tvca b b v b v I

10 13
At

=4
wn

Figure 3: Double decay rate for semileptonic final states with the choice f; = 7~ ITv and fo = 7l 0.
Red and blue lines correspond to § = 0 and 6 = 5 - 10~% + 0.054, respectively.

3.3.2 Semileptonic and two pions final state

Having shortly described decays to the same (section 3.2) and similar (3.3.1) final states we proceed
to a situation where kaons decay to dissimilar final states, namely to wlv and 7ww. From the previous
section we know that |n+| =~ |g-| ~ 1 and from the definition (28) we see that |n,.| is of the order of
CP violation, || ~ 1072 both for 77~ and 7°7°. Therefore the difference between double decay
rates for positive and negative times (29,30) will be of more than five orders of magnitude.

decay rate, a.u.

1

E Q \'x‘

NI R B L e b b b vy
-15 =10 -5 a 5 1C 15 2Q 25

|
N
2N
|
o)
Q

Figure 4: Decay rate intensity I(wlv, ) for 7~ 17w (solid line) and 71~ 7 (dashed line).
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Fig. 4 displays the double decay intensity with the choice f;+ = 7¥IFv, f, = mn. Interesting pattern
can be seen for events in which At < 0. We have:

Cisa 2 _Te|A 2 _T,|A
I (71 Tw,mm; At < 0 :7{ 1— 262 e slAt Fzlad
(77 v, T ) Ts T, = |“e + |Mr|" € +

(37)
_TLATs A,
— 2|71 — 20| [er] €™ 2 Pllcos [Am]At!—i—gﬁle—(ﬁm]}

We note that the right-hand side of the equation above has three terms corresponding to three regions in
Fig. 4. For small negative At eq. (37) is dominated by the first term, which decays rapidly as e 's|&H
then there is interference region with its term involving 7|, Am and ¢, and finally the second term
results in K, decay shape suppressed by ]nmr]Q for At < 207g. Therefore from measuring distributions
with the final states considered we can gain knowledge about phases ¢, _ and ¢qg, absolute values of
n+— and ngp parameters and mass difference Am = mp — mg. However, more precise value of Am can
be extracted from measuring (77—, 777 7) final states, while for |n;_| and |g| more accurate results
may be obtained from analysing inclusive 77 distributions [13].

17



4 Connection between double decay rate and CPT symmetry

4.1 Quantum entanglement, EPR paradox

As already described in section 3.2, considering the double decay rate to identical final states,
according to quantum mechanics we do not expect any events in At = 0. This is very counterintuitive,
as the two decays are space-like separated events and one could think that each kaon should behave
independently of the other one. This kind of correlation is of the type first mentioned by Einstein,
Podolsky and Rosen in their well-known article [14], where the authors criticize Bohr’s view of quantum
mechanics and, basing on a thought-experiment whose outcome is not only nonintuitive, but also appears
to be nonlocal, suggest that quantum-mechanical description of physical reality given by wave functions
cannot be considered complete. This type of connection between particles was soon investigated further
by Schrédinger, who coined a term entanglement (Verschrinkung) to describe the perplexing bond
between quantum systems [15]. Obviously Schrédinger could not have known about kaons at the time
of writing his paper, instead he considered a two-body decay and the measurement of positions and
momenta of particles in view of Pauli exclusion principle. An interested reader is also referred to Ref. [16].

The term decoherence in general means the time evolution of a pure state into an incoherent mixture
of states [7]. To account for possible decoherence in the neutral kaons system phenomenologically, one
can simply modify the equation for the double decay rate (26) by multiplying the interference term by
a factor (1 — (), where ( is a decoherence parameter:

I(fl)tl;fQ;tQ) = 012{|,’71|26—FLt1—F5t2 + |,’72|26—F5t1—FLt2 +
T T (38)
_ s+ L(tl—tg)
=21 =¢) |mllnle " cos [Am (t1 — t2) + ¢2 — 1]}

By taking ¢ = 0 eq. (26) is recreated (so it is quantum mechanics case), while the case of ( = 1
corresponds to total decoherence. As it turns out, the parameter ¢ is basis-dependent [17]. Current
measurements of ¢ in the two main bases, {|Kg),|K)} and {{K0> , {f(0>}, are compatible with no
deviations from quantum mechanics [18]:

Gt = (0.3 % 18gtat + 0.65y5¢ ) 1072,

(39)
Coo = (1.4 +9.5gpat + 3.88yst> 1077,

=
[N}
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Figure 5: Decay rate as a function of At for eq. (38). The blue and red lines are for ( = 0 and ¢ = 0.05
respectively. The biggest discrepancy between these two functions is for At close to 0.
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Fig. 5 illustrates the difference between the double decay rates for two values of (gr: (g1 = 0 and
sz, = 0.05. From these plots one concludes that nonzero (g;, parameter would manifest itself mainly
in the region close to At = 0.

4.2 Evolution of pure into mixed states

A discussion of a new source of C'PT and quantum mechanics violation was opened when Hawking
showed that black holes can create particles and evaporate by emitting them, resembling hot bodies [19].
In his subsequent papers [20] he introduced the idea of the evolution of pure states into mixed states in
the vicinity of black holes. Assume one started from an initial pure quantum state (described in terms
of a complete set of commuting observables), which would partially fall through the event horizon inside
the black hole. The description of this quantum state in terms of observables in the future would require
two sets of observables, observables at infinity describing outgoing particles, and observables inside the
black hole describing what fell through the event horizon. As one even in principle cannot measure what
fell into a black hole, the observation would have to be described by a mixed state obtained by summing
over all possible black hole states. This is in contradiction with quantum mechanics, where a pure state
remains pure through its evolution and is forbidden to evolve into a mixed one. Moreover, according to
proof by Wald [21], such evolution from pure to mixed states is incompatible with 7" or C' PT invariance.
Hawking further predicts that the most probable scenario for a black hole is its complete disappearance
accompanied by the loss of information about its states, and argues that such transitions from pure
into mixed states are also possible on a microscopic (elementary particle) level because of quantum
fluctuations of the metric, which could be interpreted as virtual black holes which appear and disappear
again.

Theoretical considerations described above led Ellis et al. to develop an appropriate phenomenologi-
cal framework for discussing violations of quantum mechanics due to evolution of pure states into mixed
states [22]. The formalism introduced is applied to neutron interferometry and to experiments involving
neutral kaons, on which we will concentrate. In general, the approach is based on density matrix rather
than on Hamiltonian equation. Let H be the Hamiltonian defined in eq. (5) and p the density matrix.
The following modification of Liouville-von Neumann equation is proposed (here a slightly simplified
notation from Ref. [7] is used):

dp

= —iHp + ipH' + idHp (40)

The last term on the right-hand side of the above equation is responsible for decoherence. When one
expands p in terms of Pauli spin matrices o; and the identity oy and uses the basis of C'P eigenstates
for kaons, 0H can be represented by a 4x4 matrix §H{ w Which acts on a column vector with p, as
components. The elements of JH should respect two natural restrictions, namely they ought to be
consistent with probability conservation and they should not decrease the entropy of the system (in
other words, mixed states should not be allowed to evolve into pure states). The authors of Ref. [22]
added a condition that the new term cannot change strangeness. Taking into account these constraints,
the 6 matrix is found to have only four non-vanishing elements:

A = -2 (41)

oo oo
oo oo
™ L oo
=2 L o o

Here a, B and ~ are three real parameters violating C' PT and quantum mechanics. To ensure that
Trp? does not exceed unity (so that we avoid states with complex entropy), they should satisfy the
inequalities a > 0, v > 0 and ay > (2 [22]. See also section 6.3 for expected boundaries of their
values.

The extension of this formalism to a pair of entangled kaons was done by Huet and Peskin [23].
Among other results, they obtained the double decay rate in terms of decay times ¢y, to and «, 3,7
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parameters for the decay to (7 7n ;77 ™):

I (7T+7T tl ) 7T T t2)
=2 |A0| {RL (e*FsmfI‘LtQ + eiFLt1*FSt2) _9 |,’7}+7|2 cos [Am (tl _ t2)] e—(f‘+a—y)(t1+t2)

4’% 74| sin (Amty + ¢y — ggyy) e ([ram)teTstay

i 4@ 74| sin (Amty + ¢y — ggw) e (TFo)t2e Tty

_9 <_ + 92 ﬂ | | sin ¢+* > ers(t1+t2)} , (42)

|d] cos psw

where:

d=Am+ %AF (Am and AT are defined to be positive, i.e. Am =my —mg and AT =Tg—T),

g

|’F]+,|€ = EZ)

ezzeL—E,

_ 48
R+ ap s (%)

Now we repeat the procedure described in section 3.1, i.e. a switch to ¢t = t1 + t9 and At = t1 — t9
variables followed by integration in ¢. Since the final states in this case are identical, it is enough to
calculate the double decay rate for At > 0. The result is:

1 (7T+7T atn~ At)
— 4! |77+|2{ _ RL2 7 (efrsm _{_efI‘LAt) -~
74— |7 T
843 .
@171 [ (T + @ = 5+ Tg)* + (Am)?]
: [[(f +a —v+Tg)sin (AmAt + ¢y~ — dpsw) + Amcos (AmAL + ¢ — dsw)] e~ (T+a—)At |

+ [(f +oa—v+ FS) sin (¢4 — ¢sw) + Amcos (¢ — ¢SW)] estAt] +

—3< R Sin¢+‘>e—FSAt}. (43)
Ls \AT [4—* * |d] |74 cos psw

= cos (AmA) e~ (Tra—v)at 4
I'+a—7vy

_l’_
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5 KLOE and KLOE-2 experiments

The K Long Experiment (KLOE) [24, 25, 26], which started data taking in 1999 and concluded
in 2006, was located at the crossing point of electron and positron beams of DA®NE collider [27] at
Laboratori Nazionali di Frascati (LNF) in Frascati, Italy. Now, in the year 2010, a new experiment -
KLOE-2 [28] - is about to start at the same place. When compared to its predecessor, the main changes
in the new experiment are a new collision scheme of DA®NE collider and additional detectors - inner
tracker, calorimeters and vy taggers. In this chapter DA®NE collider is described (5.1), then KLOE
detector components: drift chamber (5.2.1) and electromagnetic calorimeter (5.2.2) are introduced.
Finally new detectors involved in KLOE-2 experiment are briefly discussed (5.3)

5.1 DA®NE collider

DA®NE (Double Annular ®-factory for Nice Experiments) is an electron-positron collider. As the
name suggests, most of the time it operates with a centre of mass energy around the ¢ meson mass,
My = (1019.455+0.020) MeV. The ¢ production cross-section is large and peaks at about 3 microbarns.
Due to high luminosity and the fact that ¢ mesons decay predominantly to kaon pairs (charged and
neutral, see Tab. 2), the ¢-factory is especially suitable for investigations in the field of kaon physics.
The components of DA®NE are a 60 m long linear accelerator (LINAC), a 32 m long accumulator and
two 100 m long main rings. The layout of the DA®NE facility is presented in Fig. 6.

LINAC : l\_?

i Accumulator

"""""""" T 'r*r-_r"'rﬁ*_r"-r--------------------ﬁ--;f:;';f'
r r

*. Main rings
T:’.;:ﬂa%‘a '/,.x-‘f \

10 m

Figure 6: DA®NE facility layout. The figure is adapted from [25].

LINAC can work in two modes, alternately producing and accelerating electron and positron beams
to energies of 510 MeV (about half of the ¢ meson mass). Once produced and accumulated, electrons
and positrons circulate in two separate rings to reduce beam-beam interaction. Particles are formed
into bunches, and most of the time the number of particles in a bunch is kept on the level of 10'°,
although this number can be smaller for a given bunch. There are up to 120 bunches in each ring. In
KLOE experiment every bunch collided with its counterpart from the other ring in one of two interaction
regions (see Fig. 7). The other interaction region was used for other experiments conducted at LNF
- FINUDA and DEAR. The situation is different for KLOE-2, as there is going to be only one region
where the beams cross. Selected parameters of DA®NE can be found in Table 3.
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Table 3: DA®NE selected parameters.

Parameter Value
Energy of particles 510 MeV
Number of bunches up to 120 per ring
Number of particles in a bunch ~ 1019
Frequency of collisions ~ 370 MHz

Figure 7: A fragment of the beam pipe surrounding the KLOE interaction region. The figure is adapted
from [29].

5.2 Detectors

KLOE detection system has already been described in details in many publications - an interested
reader is referred to, for instance, Ref. [24] and [25]. Here only essential components of the detector
- drift chamber and electromagnetic calorimeter - are briefly reviewed. A schematic view of KLOE is
given in Fig. 8.

Figure 8: KLOE cross-section. The main components are the drift chamber and electromagnetic
calorimeter (EMC), surrounded by a superconducting coil. The figure is adapted from [30].
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5.2.1 Drift Chamber

The design of the drift chamber (see Fig. 9) was driven by the desire to observe kaons’ decay products
from the ¢ — K°K° reactions. To accomplish this goal, it was needed to take into account a relatively
long lifetime of Ky, 7, &~ 51 ns (for this and more features of K and Kg, refer to Tab. 1). Knowing
that kaons are produced with momenta ~ 115 MeV /¢, the mean path travelled by a K1 meson is readily
obtained as A\ = Bvycrr, & 3.5 m (the mean path of Kg, computed in the same way, is Ag & 5.6 mm).
The solution applied is a cylindrical drift chamber, whose diameter and maximal length are 4 m and
3.3 m respectively (the inner radius is 25 cm). This volume allows us to catch about 30 - 40% of K|,
decays.

Figure 9: KLOE drift chamber after completing the assembly. Light reflection on wires can be seen.
The figure is adapted from [26].
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Figure 10: Cells configuration of the KLOE drift chamber. Full points indicate sense wires, while points
empty inside show field wires. The figure is adapted from [26].
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Another important requirement for the drift chamber [26] is that it has a high and uniform recon-
struction efficiency over a large volume. Moreover, it is demanded to have a good momentum resolution.
To meet this criteria, a uniform structure of drift cells ensuring high homogeneity over the whole volume
was planned. To achieve this, the drift chamber was filled with 58 coaxial layers of wires, giving a total
of 12582 almost square cells (each with one sense wire). Altogether there are over 50 thousands of
wires, the ratio of the field to sense wires being 3:1. Since the track density is much higher at small
radii due to the relatively small momenta of particles produced in the ¢ meson decays [31], and because
reconstructing Kg mesons vertices is desired, 12 innermost layers have cells of smaller size, 2 cm x 2
cm, while the cells of 46 outermost layers are of the size 3 cm x 3 cm. Configuration of the drift cells
is presented in Fig. 10. Wires belonging to the same layer are parallel to each other, while each layer
is slightly twisted with respect to the neighbouring ones. It turns out that the drift chamber is able
to measure charged vertices of K¢ and Kj with ~ 1 mm accuracy and provides fractional momentum
resolution of <2 ~ 0.5% [32].

One more feature demanded from the drift chamber, especially important for neutral kaons physics,
is its transparency to particles in order to minimize K into Kg regeneration, multiple scattering and
conversion of low energy photons. For this reason, low-atomic-number materials were chosen: carbon
fiber composite for the mechanical structure, and the mixture of 90% helium - 10% isobutane for the
drift medium. Taking into account also the presence of wires, the average radiation length in the whole
chamber volume is estimated to be about Xy ~ 900 m [33].

5.2.2 Electromagnetic calorimeter

There is a number of requirements that are expected from KLOE electromagnetic calorimeter
(Fig. 11). To start with, basing on the time measurement of the arrival of neutral decay products

Figure 11: Electromagnetic calorimeter of KLOE. The figure is adapted from [26].

of kaons, it should allow to determine Kg and K, neutral vertices with an accuracy of few milimeters.
As the flight path of K, before it decays into neutral pions is calculated basing on the time of arrival of
the photons from 7° decays, a good time resolution is necessary (with a precision of 100 ps, the flight
path is determined to ~ 0.6 cm [34]). Another task of the calorimeter is to distinguish CP-violating
K; — 270 from Kj — 37Y decay. For this reason, the calorimeter should cover as much of the 4w
angle as possible and the effects of splitting and merging of signals should be minimised. To reach this
goals, a calorimeter consisting of a cylindrical, central barrel and two endcaps was built, all of them
marked red in Fig. 8. As a result, 98% of the 47 angle is covered. The barrel consists of 24 modules of
trapezoidal shape, each 23 cm thick (which corresponds to about 15X [30]), whilst each endcap consists
of 32 vertical modules, which are bent on both sides into a C-shape. The length of these modules varies
from 70 cm to 3.9 m. Particles crossing the electromagnetic calorimeter are detected as local energy
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deposits. When the deposits are close in time and space, they are grouped into clusters. Energy and
time resolutions for electromagnetic showers are [35]:

oB) _ 5Tk o(t) = —2 P 5100 ps.
E E(GaV) E(GaV)

5.3 KLOE-2 upgrades

As already mentioned, in KLOE-2 experiment several new detectors are going to be used. In this
section a short description of these new elements is provided. Fig. 12 illustrates the positions of the
inner tracker and electromagnetic calorimeters (CCALs and QCALs).

5.3.1 Inner tracker

Without doubt this is the most important upgrade when kaon physics is considered. It is expected
to increase the geometrical acceptance for low momentum tracks, as well as to improve effectiveness of

the decay vertex reconstruction and the track momentum resolution by reducing the track extrapolation
length [35].
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Figure 12: KLOE-2 detector scheme around the interaction point. CGEM denotes cylindrical gas elec-
tron multipliers, CCAL stands for crystal calorimeters, and QCAL indicates quadrupole tile calorimeters.
The figure is adapted from [36].

The inner tracker will consist of four cylindrical GEM (CGEM) detectors (GEM standing for gas
electron multiplier, detector described for the first time in Ref. [37]). It will be about 50 cm long, placed
between the beam pipe and the drift chamber inner wall. While the radius of the outermost layer is
naturally limited by the presence of the drift chamber, the radius of the innermost layer should be
chosen in order not to destroy the interference pattern (for example in Fig. 1) due to Kg regeneration
phenomenon. Taking into account these constrains, inner and outer radii of the inner tracker have been
designed to be 129.5 mm and 220 mm, respectively [36]. 129.5 mm corresponds to about 237g, so, as
can be deduced from Fig. 1, the interference pattern will not be destroyed. Simulations results [38]

indicate that thanks to this detector the uncertainty of the vertex position can be reduced by a factor
~2.5.
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5.3.2 Calorimeters

The motivation for using extra calorimeters (apart from the barrel and endcaps described in 5.2.2)
is to increase the detector acceptance for photons coming from the vicinity of the interaction region.
Important analyses which can benefit from these detectors include the search for Kg — 37° decay and
measurements of Kg — vy and 1 — 7%y~ branching ratios [39]. Two types of calorimeters are going to
be used:

e CCALT [40, 41, 42] - crystal calorimeters with timing, located between the end of the spherical
beam pipe (of 10 cm radius) and the first quadrupole (30 cm from the interaction point). These
detectors will extend the angular coverage of the KLOE-2 electromagnetic calorimeter from polar
angle of 20° down to 8°. Each of them will consist of two concentrical, cylindrical barrels. The
material used is cerium-doped LYSO (Lu15Y(2Si05 : Ce). When compared to PbWOy, its scin-
tillation emission time is 4 times longer, but it is more than compensated for by 300 times larger
light yield.

e QCALT |40, 41, 43| - quadrupole tile calorimeters sorrounding the inner quadrupoles. As QCALTSs
should improve the reconstruction of K, — 27° decays, there is a number of features required from
these detectors, including high efficiency to low energy (20-300 MeV) photons, time resolution of
less than 1 ns and space resolution of few centimeters. QCALTs are 1 m long with dodecagonal
structure and they are composed of five 5 mm thick scintillator plates alternated with 3.5 mm
thick tungsten plates, together giving a depth of 5.5 Xj.

5.3.3 v taggers

The goal of using v taggers is, as the name suggests, to tag the presence of a pair of photons in
the drift chamber. To achieve this goal, it is necessary to measure electrons (positrons), whose energy
is lower than nominal 510 MeV. From such measurement one infers that et and e~ interacted, and it is
assumed that the reaction was of the form ete™ — eTe v*y* — ete™ X.

Figure 13: Positions of yvy-tagging detectors. Positions of Low Energy Tagger (LET) and High Energy
Tagger (HET) are indicated by arrows. The figure is adapted from [44].

Simulation shows that electrons with energies below 250 MeV will exit the beam pipe within 1 m
from the interaction point [45], while those with energies greater than 420 MeV, focused by the first
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focusing quadrupole, will leave the vacuum chamber downstream the bending magnet [39]. The detectors
measuring low- and high-energy electrons are called LET (standing for low energy tagger) and HET
(high energy tagger), respectively, and their positions are shown in Fig. 13 (note that ‘low’ and ‘high’
here actually apply to the measured electrons, not to tagged photons). For particles reaching HET there
is a clear correlation between energy and position, hence a position-sensitive detector can be used [46].
On the other hand particles detected in LET show no such correlation, and for this reason LET has to
be an energy-sensitive detector, i.e. a calorimeter [45].
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6 Function /(7"7, 777~ ; At) with parameters «, 3,7 - fit to data

In this chapter the results of fitting the function (43) to the experimental data are reported. The
cuts used in the data analysis are listed in section 6.1, further technical information is provided in
section 6.2. Finally, in 6.3, obtained results are compared to previous measurements published by
KLOE and CPLEAR collaborations.

6.1 Cuts applied

The following cuts were applied to the preselected [47] data set before making the fit:

e on K invariant mass:

2 m§+\/(m§+ﬁﬁl)(m§+ﬁ%)— > phph, | = mgo <5 MeV

1=x,Y,2

e on Kg and K missing masses:

2
2
) .
10 MeV* > Z (\/mKo + pKS(L) \/m2 pﬂls(m — \/m% + <pgTQS(L)> ) +

/[/ x7y7

2
7 i i )
_ <sz(L) _p7T1s(L) _pﬂ'QS(L)) :| > —50 MeV

e on Kg and K missing momenta:

) ] ' 3
Z (pZKS(L) _pgl'ls(L) _pghs(L)) < 10 MeV

1=x,Y,2

e on event global fit:
2

VE — (V7 + 1Kk

KA A (3
> - < 15,

K=K% KO
i:Iﬂ%Z

where (see also Fig. 14):

VZ-K — 4ith component of a kaon’s vertex position,

Vi‘b— ¢ decay position along the ith axis,

15— kaon’s decay length,

A — kaon’s direction obtained from reconstructed tracks,

o;— uncertainty of the kaon’s decay vertex (quantity derived from Monte Carlo).

6.2 Assumptions
6.2.1 Fitting function

The fitting function is of the form:

n; =N Z‘SUE] ( ﬁa) ) (44)

J
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Figure 14: Pictorial definition of variables in the event global fit. The figure is adapted from [48].

where n; is the expected number of events in the ith bin, N is the normalizing factor (the number of
KsKj — mtn~nn~ events), s;; and ¢; are the smearing matrix and efficiency vector, and finally I; is
the function (43) integrated over the bin width of the data histogram:

t' ot/
Iy (e, B,7) = / I (7T+7F,7T+7F ; At) d(At) . (45)

tl

Let us define A¢ := ¢ — ¢psw. Then the result of (45) is:

It/ (aaﬁay) =
— ’A0’4 ’77 ‘2 {i [i <67Fst’ B e—Fs(tUrét’)) 4 i <e,th/ B eFL(tl+5t/)>:| n
U PT LTs T,
2
(f‘+a—7) {(f%—a—y)z + (Am)2]

. [e‘(fJFO‘_V)(t/Ht/) (Amsin (Am (' +0t')) — ([ + a — ) cos (Am (¢’ + 6t'))) +

_ e~ (T+a—)t’ (Am sin (Amt’) - (f +a-— 7) cos (Amt'))] +
+ 8
dl i+ | [T+ o =7+ Ts)” + (Am)*| [(T+a =9)" + (Am)*|

. {(f +a—v+Tg) {67(1’4&77)# [(T + a —~)sin (Amt’' + Ag) + Amcos (Amt' + Ag)]| +

(
— e~ (THa=) ) [(F o — ) sin (Am (¢ + 6t') + Ag) + Amcos (Am (t + 6t') + Ag)] } +
+ Am {em T (D4 o = 5) cos (Amt’ + Ag) — Amsin (Amt/ + Ag)] +
e ()00 [ (T 4 o ) cos (Am (¢ + 0t') + Ag) + Amsin (Am (¢ +6t') + A¢)] | } +
83 (B—Fst/ _ e—Fs(t/-i-(St/))

+ — 3 5
[d] 17| [ (T + @ =y + Tg)® + (Am)?| Ts

(T +a—v+Ts) sin (Ag) + Amcos (Ag)] +
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—%( LA Sin¢+‘> (e_FSt/—e_FS(t/+6t/)>}. (46)
TS \AT |ig—|*  [d] 74— cos dsw

6.2.2 Smearing, efficiency, binning, range

Smearing matrix (Fig. 15) defines how the probabilities of reconstructing certain At values depend
on actual At values. Efficiency histogram (Fig. 16) describes the probability of successful reconstruction,
in this case for the (77—, 7" 7~) decay channel, as a function of At. Both smearing matrix and values
of efficiencies used in this work are the same as those used in KLOE analyses (obtained from Monte
Carlo simulations). As indicated by Figures 15 and 16, the data were grouped in 17g bins, comparable
with KLOE resolution [35].
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Figure 15: Smearing matrix presenting At reconstructed (vertical axis) vs. real (simulated, horizontal
axis) values.
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Figure 16: Efficiency for successful identification of (77—, 77 ~) decay as a function of time difference
between the decays.
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What differs significantly from KLOE analyses is the range in which the fits have been performed. In
this work only time differences between 0 and 1275 have been taken into account. This limit is justified
by the observation, that for higher At values the decay rate shape is considerably influenced by Kg
regeneration on the beam pipe. In KLOE analyses this effect was accounted for, which allowed fitting
in the whole range covered by the smearing matrix, 0-507g.

6.2.3 Dealing with small numbers

In this section information about programming approach is presented. It is crucial for understanding
the code in appendix B, however a reader uninterested in computational details can without much loss
skip to section 6.3.

As o, # and v parameters can be as small as 10720 GeV, a special way of handling them in programs
is needed so that they do not cause numerical problems. For this reason the following substitution were
used in the code (the actual values are on the left side, the values used are after arrows):

h=6.58211915 - 1072 GeV- s — h = 6.58211915
7¢ = 0.8958 - 1071 s — 7¢ = 0.8958
7 =511.6-1070 s — 7, = 511.6

h
Am = 0.5920 - 10'°= — Am = 0.529 - h
S

Using the above we can also write I'g = %, I'y = % and introduce a time conversion constant t.. = 5.
After these redefinitions I's, I'r, and Am are in the units of 10715 GeV, while a product t[in 7g units] -t

is in the units of 101 GeV~1.
6.2.4 Actual fitting function, normalisation

We start from modifying eq. (43) by multiplying every term with time by t... Instead of (46) we
get:

Iy (Oé, ﬂa ’7) =
— ‘A0’4 ’?7]—"__’2 { RL _ |: 1 <6—FStcct’ - e—FStcc(t’+(5t’)) + L <6_FLtcctl . e_FLtcc(t,+6t,)):| n
’?7.4-_’2 I [ Ustee Trtee
2
(C+a—7) [(f +a— 7)2 + (Am)ﬂ 12,
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80
+ — 5 5 — 5 . .
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+Am {e—(f+a—7)tcct' [(T 4 & = ) teecos (Amteet + Ad) — Amteesin (Amtet’ + Ag)] +
+ e (THam)tee+0) (T 4 o — ) tpocos (Amtee (£ + 6t') + Ad) + Amteesin (Amtee (£ + 5t') + Ag)] }} +
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The function (43) should be normalised before fitting in order to avoid any systematical effects from
nonzero values of «, 5 and v parameters. Here eq. (46’) turns out to be really useful, as it is enough to
substitute ¢’ by zero and ' + 6t by Atmax (which in this case is 127g). One then obtains a number by
which function (43) should be divided to be normalised to unity.

6.3 Results, comparison with previously published (KLOE, CPLEAR)
6.3.1 Influence of the parameters upon the decay rate shape

To check how a nonzero value of each parameter separately would affect the decay rate curve the
Figures 17, 18 and 19 were prepared. To exaggerate the result, the numbers taken for values of the
parameters are approximately an order of magnitude bigger than the ones obtained in the CPLEAR
experiment [49]. From these plots one can conclude that the curve is the least sensitive to «, that all

three parameters can manifest themselves in the interference region, and that the plateau is mostly
affected by (.

normalised decay rate

0,025 —

0.02

0.015

0.0

0.005

At T

Figure 17: The effect of nonzero « value on the double decay rate shape. The black curve is for
a = =v=0and the red for « = 10716 GeV, g =~ = 0.

6.3.2 Fits with o, § and ~ parameters

Three kinds of fits were performed. First, each of the three parameters was allowed to differ from
zero with the other two parameters vanishing. Then a fit was made assuming complete positivity
hypothesis (a = v, = 0). Finally a fit with all three parameters being free was performed. Each time
normalisation was left as an extra parameter. The results are summarised in Tab. 4.
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decay rate, normalised

0.025
ooz -
o -18
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o] | | | | | - | | |
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At g

Figure 18: The effect of nonzero § value on the double decay rate shape.

a=f=v=0and thered for 3=2-10"18 GeV, a =y = 0.

decay rate, normalised

n.025

0.c2

0.015 Y= IO-ZDGGV
o= B =0
.01
0.005

20 25 30 35 490 45 50
At Ty

Figure 19: The effect of nonzero = value on the double decay rate shape.
a=f=v=0and the red for y = 10720 GeV, a = = 0.
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Table 4: Fit summary table.

Assumption a, GeV 8, GeV v, GeV x%/ndf | Figure
B=~v=0 | (1.184+0.0013) - 10~1° - - 4.30 20
a=v=0 - (1.26 +£0.11) - 10718 - 3.82 21
a=83=0 - - (1.934+0.21) - 10720 | 2.02 22

a=7,03=0 - - (1.934+0.21) - 10720 | 2.02 23

- (2.662 £ 0.0025) - 10716 | (=2.76 +0.19) - 10718 | (4.25 £0.21) - 10720 | 1.87 24

[y
o)
[

¥/ndf47.26 /S 11
F1 0.1854E+05 £ 231.9
2 1.184+ 0.1251E-01

T

800

number of events

700

600

500

4040

300

200

100

Figure 20: Fit with condition 3 =~ = 0.
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Figure 21: Fit with condition o =y = 0.
£ r wondf2221 /11
¢ 200 — P1 0.2007E+05 + 220.7
2 i P2 D.1925E-04 + 0.2073E—05
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T 800
: 4+
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: R
700
£00
500
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Figure 22: Fit with condition a = § = 0.
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Figure 23: Fit with conditions o =, 8 = 0.
number of events
F w/ndf 16.87 7 9
900 = P 0.1967E+05 + 208.0
i P2 D.2662 £ 0.2490E—03
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Figure 24: Fit of the function (43) to data.
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The obtained values of paraeters can be compared with KLOE and CPLEAR results:

Table 5: Comparison with previous results for the fit with all parameters free.

CPLEAR [49] KLOE 2007 (2002 data) [7] This work
(—0.5£2.8)- 10717 GeV | (—=1073 £9)- 10717 GeV | (2.662 £ 0.0025) - 10716 GeV
(254+23)-1071 GeV | (3.7759 £1.8)- 10719 GeV | (—2.76 +0.19) - 1078 GeV

Y| (1.1425)-1072' GeV | (—0.513F +1.2). 1072 GeV | (425 40.21) - 1072 GeV

Table 6: Comparison to previous results with a = 7, 8 = 0 assumption.

KLOE [28] This work

v = (0.7 £ 1.2¢at & 0.3g55t) - 10721 GeV | v = (4.25 £0.21) - 10720 GeV

One can notice that values obtained in this analysis are generally higher than than those obtained
before, in some cases the difference is of one order of magnitude. However, these results should be
treated as less significant than those from Ref. [49, 7, 28] for several reasons. Most importantly, the fit
was performed only for the 0-127g range, while in the KLOE analysis the range was 0-507g, which was
made possible by accounting for Kg regeneration on the beam pipe. What also matters is that here
only a subset of all gathered data was used, namely the data from the year 2005. A small difference
in favour of this analysis is that for the KLOE fit the integral (46) was only estimated, not obtained
analytically.

While KLOE and CPLEAR experiments gave only the upper bounds for the «, 8 and v values,
there are also predictions for their lower limits. For instance, a prediction that will probably be verified
by the KLOE-2 experiment is given in Ref. [50]. Assuming that the so-called “solar neutrino problem”
(deficit of observed neutrinos from the Sun with respect to the theoretically expected amount) is only
due to mechanism of evolution from pure into mixed states, the authors derived:

v >7.4-107% GeV for a < 2,

47
a>1.5-10"2 GeV for oo > 2. (47)
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7 Summary

One of the goals of this thesis was to describe the time evolution of quantum entangled kaon pairs
in a way intelligible for a reader unfamiliar with the physics of kaons. For this reason many calculations
and examples of Fortran code used in programs have been included in the appendix.

CPT symmetry has not been observed to be violated. Nevertheless, several parameterisations have
been invented that allow for its noninvariance for different reasons. One of the ideas is that C' PT might
be violated by the evolution from pure to mixed states induced by quantum gravity effects. This is
especially interesting, as although the concept has been known for a long time, a theory of quantum
gravity still eludes us and when describing it we have to rely on intuition rather than on solid theoretical
ground.

An approach was made to analyse a subset of KLOE data for the effects of quantum gravity. The
results obtained, although less significant than KLOE and CPLEAR ones, encourage further measure-
ments, as they indicate that precision expected in KLOE-2 experiment may be high enough to verify at
least a fraction of theoretical predictions.

Kaons seem to have a patent for breaking symmetries. With more and more precise tests, we may
soon for the first time witness a violation of the C'PT symmetry thanks to the KLOE-2 data. Even if
not, this experiment is certain to deepen our understanding of these fascinating particles.

38



A Calculations

A.1 Calculations for chapter 2
A.1.1 Eigenvalues

Hamiltonian from eq. (5) can be written using explicitly real and imaginary parts of M and T'
matrices:

RMi1 + %an +i (SMy — %%Fn) RMi9 + %%FH +i (SMyg — %%FH)

RMio — ST 10 — i (SMi2 + 3RT12)  RMan + 33T + i (SMaz — FRTa0)

We now move to equation for A (11). In the CPT limit (6) Hy; = Hag, so A is reduced to:
A =4HoHo;.

We further simplify this expression by going to CP limit, which means we assume that the phases of
Mi5 and I'15 are the same. We can then write:

Mo = |M12| cos gb +1 |M12| sin ¢, T'o = |F12| CcOoS ¢ +1 |F12| sin ¢
Using the above we rewrite Hio and Ho;:
1 . . . 1
Hyy = |Mjs| cos ¢ + 5 IT12|sin g + i | |[Miz|sing — 3 IT'12| cos ¢
1 . . . 1
Hy = |Mjs|cos ¢ — 5 ITy2|sing — i | [Mia|sin¢ + 3 IT12|cos ¢ |,
so the product Hqi5Ho; equals:
1 . ) . 1
H12H21 = |M12|2 COS2 ¢ — 5 |M12F12| SlIlgbCOS gb — 1 |M12|2 SlIlgbCOS gb — 5 |M12F12| COS2 ¢+
1 1 ) )
+ 3 | M12T 12| sin ¢ cos ¢ — 1 \F12\2s1n2 ¢ — 3 | MoT 15| sin? ¢ — 1 \T12!2 sin ¢ cos ¢+
) . i . . 1 .
41 |M12|2 sin ¢ cos ¢ — 3 | M7oT 9| sin’ ¢ + |M12|2 sin? ¢ + 3 | M12T 12| sin ¢ cos ¢+
) 7 1 1
~5 | M12T5] cos? ¢ + 1 ]Flg\z sin ¢ cos ¢ — 5 | M12T 12| sin ¢ cos ¢ — 1 ]Flg\z cos? ¢

It is easy to check that the terms with sin ¢ cos ¢ cancel out, and what remains gives:

1 )
HiyHy = |My)? - 1 IT12® — i | Mol 12| =

1 Mol
B <|M12|2 Ty |F12|2> exp | —tarcsin | 2 = 112‘ 2 .
4 ‘M12’ +Z’F12’

Now we can return to the discriminant A:

1 MyoT
A=14 (\Mu\z +— \F12!2> exp |—iarcsin | 5 2 112| 5]
4 | Miz2|” + 7 [Tz

1 ; MioT
VA =2y /| Mp|* + = T2 exp — L arcsin | 5 2 112| 5|
4 2 |Mia|” + 7 [Tz

and the eigenvalues are of the form of the usual quadratic equation solutions:

_ Hy+Hpn+VA
B 2

At
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A.1.2 Eigenstates

The equation for eigenvectors is of the standard form:

Ut
(Hn—)\i H12) = 0.
W
From this we find the relation between u4 and w4:
wy  Ar— Hu cpr Hyy
Hii —Ap)ur + Hiowe =0 - — = ==+
( ) Uy Hip Hip
In the symmetric limit of exact CP (arg ]1\;[12 = 0) we have [L1]:
Hyy My — 40 M A
Hz = le - zf’lf = M}i = phase factor def e,
12 72412
Using the above, the eigenvectors are found to be:
e for A\, we have w, = e™®u,, so:
U4 1 ;o e*i%
U+ = = Ut ‘ =uqe? o
w+ eZCl{ 625
e for A_ we have u_ = —w_e™**, so:
U_ e o o e 2
v = = —w_ =—w_e ‘2 .
w_ -1 —e'2

A.2 Calculations for chapter 3
A.2.1 i) as a function of |Kg),|K})

Calculations presented here are rather basic, but they are given for completeness.

For the sake of brevity let us denote: «a~ ,/ 1 + \65[ , B =y )2 1 + IEL\ and v

1 — eger. Using these variables we can rewrite (

’K5>=Oé[(1+65)‘[(0> 1—65 | >],
[K) = B[ +en) [K) = (1= en) [K7)]

From this we obtain |K") and |K°) expressed by |Kg) and |Kp):

_1l—ep 1—e€g
‘KO>_ 20y |KS>+ 2B,}/ | L>7
1+e€p 1+eg
|K°) = S0 |Ks) — 55 K1),
so the initial state is:
N 1—e¢p €S 1+¢€p 1+es
i = 5 (| g s )+ 55 W ()| [ s o) - o KL ()| +
1 1 1-— 1-—
| s (=) = S 1K () | - | T s (o) + T K ()| )



It is easy to see that the terms with products |Kg (+p)) |Ks (—p)) and |Kp, (+p)) |Kr (—p)) cancel out,
so the above equation gives:

MLW {1+ ) (1= e5) + (1= e1) (1 + €5)] [Ks (+7)) |1, (=7)) +

—[(T+es) (T —er) + (1 —es) (L+e)l [KL (+P)) [Ks (=P))} =
{27 |Ks (+9)) [KL (=p)) — 27 |KL (+0)) |Ks (=)} =

i) =

1
" 1208’
-~ ﬂlam{yxs (+0)) IKz (=) — | K1 (+5)) | Ks (—7))}

Therefore we can write:

i) = %{!Ks (+2)) K1 (=p)) = [K1 (+D)) [ Ks (=P))}

where N, N = (2aﬁ7)71, written in original variables eg, €r, is:

VRlesP) 2 (1 1al) (1 esf?) (14 eaP)
N= 2(1 —egeyr) B 1 —eger, ~ L

A.2.2 Double decay rate I (f1,t1; fa,12)
We want to obtain eq. (26). We have:

I(f1,t1; fa,t2) = A(f1,t1;5 fa, t2) A" (f1,t1; fo, t2) =
NJ? ) . _Tstie
= L4 1 Kes) (o 71 K1) (2 1TV KGs)” (o [T B e Pt =Tota g
+ (fLIT| KL) (f2|T| Ks) (f1 |T| KL)* {2 |T| Kg)* e TrtrTst24
— (fL|T| Ks) (f2 |T| Kz) (f1|T| KL>* (fa \T]KS> eimr—mg)ti—i(mp —ms)ta ,— 2 (t1+t2)—_(t1+t2)+
— (1 |TIKL) (f2IT| Ks) (f1 |T| Kg)" (f2 |T| KL)" e*i(mL’mS)“”(mL’mS)t?6*7(““2)*7(““2)} =

NP

9
" £ iAm(t— g4l

— (AT Ks) (fa | T| K1) {1 |T| K1)* {f2 |T| Kg)* e?Amthi—ta) = =55 E (htta) |

. I'g+T
(AT KLY (f2T] Ks) ([T Ks) (fo IT| Ky im0 S5 )]

NP ( (f2|T| KL |?
2

(f2|T| Ks)
‘ (fi|T| Kr) 2
(f1|T| Ks)

{|<f1 TV Ks) (f2 | T| K1) [? e 070 4 [(fy [TV K1) (f2 |T| K)[? e TSt

—Ist1—TLt2 +

(1T Ks) (f2|T| Ks)

(LI Ks) (fo IT| Kg)| e TotiTstay

(f1|T|KL)"
(N1 |T| Ks)"

<f2 |T| KS>* <f2 |T| KS> % . eiAm(tlftQ)ef FS;FL,(tlthz)_}_
2 S

(1 1T Ks) (U 1TV Ks)* (o T Ks) (o |T] Ks)* % emidm(t )~ P “1“”) -

(AT Ks)
e o (LA N Lo
VLTI Rs) (TR <‘<f 7| Ks) &S

B [<<f1 T KL>>* (f2|T| KL>eiAm(t1—t2) n (i|T|KL) <<f2 T KL>>*e—iAm(t1—t2)] e—@(tﬁtg))
(filT|Ks)) (f2|T| Ks) (filT| Ks) \(f2|T| Ks)

—(fi|IT| Ks) (f1|T| Ks)*
(f1|T| Kr)

2
—I'pt1—Tgta +
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It is now convenient to define C12 and n;, see egs. (27) and (28). Using these quantities we can write:

I(f1,t1; farta) = Cha {\771\2 e~ Trti—Tst2 4 ‘772‘2 e Tsti—Trta |
_ [|771| eI [py| iz iAM(tL—t2) | | | i1 |, | 6—i¢26—zAm(t1—t2)} oS L (t1—t2)} _
= C19 {‘771‘2 e Trti-Tstz ‘772‘2 e Tsti—T'ota o

— ‘7’]1‘ ‘7’]2‘ [ei[Am(tI*tQ)“r(bQ*d)l] + e*i[Am(t17t2)+¢)27¢)l}:| 67@“17}52)} _

2012{|771|267FL2517F5252+|772|267F5t171111t2 +
_PsHTL (4
— 2 ol O eos [Am (11— 1) + 62— 61]}

em-l—e*m

where we have used the fact that cosa = >

A.2.3 Double decay rates I (fi, fo, At)

Our starting point is eq. (26). Substituting ¢ =1t; +t2, At =1t — to; t = %, to = =AL
we obtain:

t _p t=At

T e T e T

L(f1, fost, A) = Cpp { 7T 75
s+Tp,
— 2 ol e cos[AmAH@—m}
r

9o _Tp, Tp _TI's, I's 9 _Ts, _Tg Iy, T'p
:012{’?71’ e B lem T AT T T AL |2 =Tt Mt A

T'sg+l'p
— 2| Il 7 “Teos [AmAt + 62— ¢1] } =

'p+ls 'r—rs
te— 5 At

= C12 {!?71!2 e 2

+I'r,
— 2| o5 o A+ 62 - oil} =

g+l'p, I'p—Ts
te 3 At

+ mal"e” 2 +

Tr—
= Ch2 {’771’2 e s Ay mole At+

FL+FSt

— 2|m | |n2| cos [AmAt + ¢ — ¢1]}e_ 2

Since we want to get rid of the dependence on t = t; + to, we integrate the last equation in this
variable. We observe that for non-negative numbers ¢y, t5 such that t; > to we always have t1+ty > t1—ts
and similarly we have t1 4+ to > [t1 — ta] for t1 < t3. So if we divide this integral into two parts, one
of them satysfying the condition At > 0 and the other At < 0, the lower limits will be At and |A¢]
respectively and infinity will be the upper limit in both cases.

The Jacobian matrix for transformation from t1, to to t, At coordinates is:

ot Oty
. T A
jac (t1,ta — At,T) = :;)tQ aat:
9T 0At
Knowing that ¢; H'At and to At and performing simple calculations we get jac (t1,t2 — Att) = 2.

Taking that into account we can finally write:
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o for At > 0:

o0

I(f1, fo, At > 0) = jac(t1,te — Att) - /I(f17f27Atat) dt =
At

o0
1 r;,-T Iy —T
- 5/012{|771|26—L2 SAL 12 o g ALy
At

p+l's

= 2| o] cos [AmAL + 6y — g o2t =

FLfFSAt

1 _Tp-Tg
:5012{\771\26 A e A

e}

Ly 4T
—2|m| |n2| cos [AmAt+¢2_¢1]}/e——L2 Stgp —

At
LL-Ts A¢

1 _Tp-T
= O] imP e Ay P A

2 FL+FSt t=00
T2

———c¢
I +Ts t=At

— 2|m| || cos [AmAL + pg — ¢1]} : [

FLfFSAt

1 _Tp-T
= Lo {mP e A e

2 I 4lg
-2 AmAt _ }.7——&:
M| 2] cos [AmAL + ¢2 — ¢1] T

YY) {ImP eTTEA 4 [y Tty
4T

T
—2|m||nel e 2 “Pleos [AmAL + ¢y — ¢1]},

e similarly for At <0:

o0

I(f1, f2, At <0) = jac(t1,ta — At,t) - / I(f1, f2, At t)dt =
|At|

- 3012{’771!2 e T S 2 e S 1Aty

2 4T T t=00
___ 2 LFE
I'p+TDs t=|At|

Ci2 2 TL=Ts|py 2 Ds—Tpjay
PS"‘FL{‘?h‘ ¢ +[ma| e +

;4T

— 2|m| 2] cos [~Am | At] + pg — ¢1]}6—LTS|A,:\ _

__Cn

I's+Tp
IRVESIpN

= 2|m||mele” 2 cos[Am]At’_H]jl_@]}.

— 2| |m2] cos [AmAL + ¢o — ¢1]} : [

{|771|2 e~ Tslat |772|2 e Trlat
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B Fortran code

B.1 Plotting a normalised function

function wfnorma(dt)

real gkl,gks,gav,dg,taus,taul,hbar,dm,df
real alpha,beta,gamma

real rl,eta,wu,iks,igr,zet,dtm

real partl,part2,part3,partd,partb

real npl,np2,np3,np4,np5,norm

hbar=6.58211915
taus=0.8958
taul=511.6
dm=0.529*hbar
tcc=taus/hbar
gks=hbar/taus
gkl=hbar/taul
dg=gks-gkl
gav=(gks+gkl) /2

alpha=0.0
beta=0.00
gamma=0.0000

pi=4.*atan(1.)

eta=0.002232

phil=43.51%pi/180

phi2=atan(2*dm/dg)

df=phil-phi2

dvar=sqrt (dm**2+0.25*dg**2)

rl=eta**2+gamma/dg+4*beta/dg*eta/ (dvar**2)
& *(dm*dg+*cos(phil)+(dm**2)
& *sin(phil)-0.25%(dg**2)*sin(phil))

igr=gav+alpha-gamma
iks=igr+gks
wu=8%beta/ (dvarxeta* (iks**2+dm**2))

zet=rl/(gavxeta**2)

C maximal delta t value:
dtm=50.

partl=zet*(exp(-gks*dt*tcc)+exp(-gkl*dt*tcc))
part2=-2/igr*cos(dmxdt*tcc)*exp(-igr*dt*tcc)

part3=wu* (iks*sin(dm*tccxdt+df)
& +dmxcos(dm*tccxdt+df))*exp(-igr*tccxdt)

parté4=wu* (iks*sin(df)+dm*cos(df))*exp(-gks*tcc*dt)
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part5=-2/gks* (gamma/ (dg*eta**2)+2*beta/(dvar*eta)
& *sin(phil)/cos(phi2))*exp(-gks*tcc*dt)

npl=zet*(1/(gks*tcc)*(l-exp(-gks*dtm*tcc))
& +1/(gkl*tcc)*(1-exp(-gkl*xdtm*tcc)))

np2=-2/(igr* (igr**2+dm**2)*tcc**2)
& *(igr*tcctexp(-igrxdtm*tcc)
& *(dm*tcc*sin(dm*dtm*tcc) -igr*tcc*cos (dmxdtm*tcc)))

np3=wuxiks/((igr*tcc)**2+(dm*tcc) **2)
& *(igr*tcc*sin(df)+dmxtcc*cos(df)-exp(-igr*tcc*dtm)
& *(igrxtcc*sin(dmxtccxdtm+df)+dm*tcc*cos (dmkxtcc*xdtm+df)))

np4=wu* (iks*sin(df)+dm*cos(df))/(gks*tcc)
& *(1-exp(-gks*tccxdtm))

np5=-2/(tcc*gks**2)* (gamma/ (dgxeta*x*2)+2xbeta/ (dvarxeta)
& *sin(phil)/cos(phi2))*(1-exp(-gks*tccxdtm))

norm=npl+np2+np3+np4+np5
wfnorma=(partl+part2+part3+part4+part5)/norm

return
end

B.2 Fitting

Fitting was done in PAW (Physics Analysis Workstation). Examples of fortran and kumac files are
below.

B.2.1 Fortran file

function fitnorma(dt)

parameter (nbin=50)

real teo(nbin),eff(nbin),taul,dtm

real rl,eta,gks,gkl,dg,dm,gav,pi,dvar

real help,helpl,tcc,hbar,phil,phi2,df,taus
real npl,np2,np3,np4,np5,norm

vector smear

vector nnbin

vector effi
common/pawpar/par (4)

pi=4.*atan(1.)
hbar=6.58211915
taus=0.8958
taul=511.6
tcc=taus/hbar
gks=hbar/taus
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gkl=hbar/taul
dg=gks-gkl
gav=(gks+gkl)/2
dm=0.529*hbar
phi1=43.51pi/180
phi2=atan(2*dm/dg)
df=phil-phi2

eta=0.002232
dvar=sqrt (dm**2+0.25*dg**2)
rl=etax*2+par(4)/dg+4*par(3)/dg

& *eta/(dvar*#*2)*(dmxdg*cos(phil)

& +(dm**2)*sin(phil)-0.25*(dg**2)*sin(phil))

igr=gav+par(2)-par(4)

iks=igr+gks

wu=8*par (3)/(dvar*etax (iks**2+dm**2))
zet=rl/(gavxeta*x*2)

C maximal delta t value:
dtm=12.

npl=zet*(1/(gks*tcc)*(l-exp(-gks*dtm*tcc))
& +1/(gkl*tcc)*(1-exp(-gkl*dtm*tcc)))

np2=-2/(igr* (igr**2+dm**2)*tcc**2)
& *(igrxtcctexp(-igr*dtm*tcc)
& *(dm*tcc*sin(dm*dtm*tcc)-igr*tcc*cos(dm*dtm*tcc)))

np3=wu*iks/((igr*tcc)**2+(dm*tcc) **2)
& *(igrxtcc*sin(df)+dm*tccxcos(df)-exp(-igr*tcc*dtm)
& *(igrxtcc*sin(dm*tccxdtm+df)+dmrtcckcos (dmktcekdtm+df)))

np4=wu* (iks*sin(df)+dm*cos(df))/(gks*tcc)
& *(1-exp(-gks*tccxdtm))

np5=-2/(tcc*gks**2) * (gamma/ (dg*eta**2)+2*beta/ (dvar*eta)
& *sin(phil)/cos(phi2))*(1-exp(-gks*tcc*dtm))

norm=npl+np2+np3+np4+np5

binw=50./nbin

nnbb=nnbin (1)

write(6,*) (par(i),i=1,4)

nowa=0.

aidt=0.

i=int (dt/binw)+1

do j=1,nbin
if (smear(j,i).gt.0) then
dt1=binw*(j-0.5)
teo(j)=

& par(1)/norm
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B.2.2

*(rl/ (gav¥eta**2)*(1/ (gksxtce) * (exp(-gks¥tce* (j-1))
-exp(-gks*tcc*j))+1/(gkl*tcc) * (exp(-gklxtce*(j-1))
-exp(-gkl*tcc*j)))

-2/ (igr* (igr**2+dm**2) *tcc**2)
*(exp(-igr*tcc*j)*(dmxtccxsin(dmxtcc*j)-igr*tce
*xcos (dm*tcc*j)) -exp(-igr*tcc*x(j-1))* (dm*tcc
*sin(dm*tccx(j-1))-igr*tcc*xcos(dmxtcc*x(j-1))))
+wu/ ((1gr**2+dm**2) *tcc**2)

* (iks* (exp(-igr*tccx(j-1))*x(igr*tcc
*sin(dm*tccx(j-1)+df)+dm*tccxcos (dmstcex(j-1)+df))
-exp(-igr*tcc*j)*(igrxtccxsin(dm*tcexj+df)
+dm*tccxcos (dmxtcc*j+df)))

+dmx (exp (-igr*tcc*(j-1))*(igr*tcc

*cos (dm*tccx(j-1)+df) -dm*tcc*sin(dm*stcex (j-1)+df))
+exp(-igr*tccxj)* (-igrxtccxcos (dmktcc*j+df)
+dm*tcc*xsin(dm*tccxj+df))))

+wu/ (gks*tcc) * (iks*sin(df)+dm*cos(df))

* (exp(-gks*tcc*(j-1)) -exp(-gks*tcc*j))

-2/ (tcc*gks*x2)* (par (4) / (dgxetax*2)

+2xpar (3) / (dvar*eta)*sin(phil) /cos(phi2))

* (exp(-gks*tcc*(j-1)) -exp(-gks*tcc*j)))

aidt=aidt+effi(j)*smear(j,i)*teo(j)
endif
end do

fitnorma=aidt
return

end

Kumac file

for/fil 67 fitnorma.ps
opt nsta

opt fit

set fit 1111111111
h/fil 1 tt.hbook
set hcol 1

set mtyp 20

k=50
ve/cre

nnbin(l) r 4

|ve/cre tmax(1l) r 30

ve/cre
ve/cre
ve/rea
ve/cre

tmax (1) r 12

smear ([k], [k]) r

smear newsmear_chilb_1ts_full.dat
effi([k]) r

|ve/rea effi ./neweff/eff_chil5_0.25ts.txt

ve/rea
ve/cre
ve/cre
ve/cre
ve/cre

effi eff_corr_chilb_1ts_full.txt

par(4) r 120000. 0. 0. 0.

step(4) r 300 0.0000001 0.0000001 0.0000001
pmin(4) r 5000. -9.4 -0.4 -0.4

pmax(4) r 200000. 10.0 0.4 0.4
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ve/cre errpar(4) r

h/fit 118(0.:12.) fitnorma.f SBLE 4 par step pmin pmax errpar
h/plo 118(0.:12.) e

graphics/hplot/atitle ’>[D]t, [t]?S!’ ’number of events’

meta O

close 67
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