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Abstract

η′ meson production in the pp→ ppη′ reaction near threshold

The η′ meson belongs to the ground state pseudoscalar meson nonet. Accord-
ing to the SU(3) classification its quark composition is similar to the structure of
the η meson. However, due to the small pseudoscalar mixing angle (ΘPS ≈ 15◦)
the η′ meson is predominantly a flavour singlet state and hence can comprise a
significant amount of gluons. A possible gluon admixture would be reflected in the
production mechanism of the η′ meson in the elementary proton-proton reaction,
it would modify an η′pp coupling constant which determines the direct produc-
tion amplitude, and it would also influence the potential of the proton-η′ meson
interaction. These issues make the investigations of the η′ meson very interesting.

The total cross section for the production of the η′ meson in the pp→ ppη′ re-
action has been measured close to the kinematical threshold. The experiment has
been carried out at the cooler synchrotron COSY using the internal proton beam
and the hydrogen cluster target. The ejected charged particles were registered
using the COSY - 11 detection system, which allow for an unique identification of
positively charged particles and determination of their four - momentum vectors.
Events with the creation of the η′ meson were identified by means of the missing
mass technique.

The obtained cross sections for the η′ meson production are by about a factor
of fifty smaller that the cross section for the production of the η meson at the same
center of mass excess energies. Such large difference suggests that these mesons
are produced in a rather different way.

Comparison of the measured cross section values with calculations based on the
effective Lagrangian approach yields an upper limit for the η′pp coupling constant.

The analysis of the energy dependence of the total cross section for the pp→
ppη′ reaction suggests that either the primary production amplitude decreases
very close to threshold or that the proton-η′ interaction is repulsive.
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1. Introduction

Experiments carried out in recent years at the new accelerators such as IUCF,
CELSIUS, and SATURNE, delivered precise data on the π0 and η mesons produc-
tion in proton-proton collisions near the kinematical threshold. These data enable
investigations of the reaction dynamics and the final state interaction between the
produced meson and nucleons. The hitherto existing investigations have shown
that the short range component of the N−N force and the off-shell pion rescat-
tering dominate the production process of the π0 meson [1], whereas the η meson
is predominantly produced through the excitation of the intermediate baryonic
resonance [2, 3]. It was also established that the η production cross section is
largely influenced by the strong η-proton interaction [4, 3].

In context of the extensive experimental and theoretical studies of the π0 and
η production it is natural to ask about the mechanism of the η′ production - the
heaviest partner of these mesons in the pseudoscalar meson nonet - and about
the strength of the η′-proton interaction. The investigations concerning the η′

meson are particularly interesting since it is predominantly a flavour-singlet state
and hence it can couple directly to gluons. Therefore one plausible production
mechanism, suggested by N. Nikolaev, can be a fusion of gluons emitted from the
two colliding protons, which is complementary to meson exchange current and
would probe the gluonic content of the η′ meson [5]. At present, any quantitative
conclusions are not possible because of the lack of the theoretical calculations,
however the data on the η′ meson production in the nucleon-nucleon and γ-
nucleon collisions enables the studies [6, 7] of this intricate issue.

There exists a lot of open issues concerning, for example, the unexplained
large mass or just mentioned gluonium contents of the η′ meson. None of the
experimentally observed baryonic resonances decays into the η′ meson, whereas
many of them decay into pions, kaons or η mesons. This and other interesting
issues concerning the η′ will be presented in the first part of this work, which gives
a review of the present knowledge of this meson.

The main purpose of this dissertation, however, is the determination of the
total cross section for the pp→ ppη′ reaction at a few excess energies close to
the kinematical threshold, and the discussion of the results in context of the
production mechanism by the confrontation of the experimental data with the
existing theoretical calculations as well as by the comparison of the obtained
data with the production of the η and π0 mesons. Measurements close to the
kinematical threshold have both experimental and theoretical advantages. This is
because measuring the meson production close to threshold with the fixed target
allows to register all ejectiles by means of relatively small detectors, and in the
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2 Introduction

theoretical analysis it is enough to consider only an S-wave production in the exit
channel.

One of the interesting conclusions will be the estimation of the upper limit
for the proton-η′ coupling constant under some plausible model assumptions. It
is worth noting that the proton-η′ coupling gη′pp measures the total spin of the
proton carried by its constituent quarks [8].

The data on the η′ as well as on the η and π0 meson production in the proton-
proton collisions are useful for an understanding of the dilepton mass spectra
measured in the heavy-ion collisions in order to study the properties of the vector
mesons in a dence nuclear matter [9, 10]. The π0, η and η′ contributions to the
e+e− invariant mass spectra arise from the Dalitz decay of these mesons.

A few months before the experiment presented in this thesis was performed, the
data have been published concerning the η′ meson production in the pd→3He η′

reaction, which have been obtained at the SATURNE accelerator using the SPES4
spectrometer [11]. The evaluated total cross section amounts to ∼ 0.16 nb at a
excess energy of Q = 0.5 MeV . However, there were no published data con-
cerning the total cross section for the pp→ ppη′ reaction close to the kinematical
threshold. The only existing very preliminary results, obtained by the SPES3 col-
laboration, revealed that the near threshold total cross section for the pp→ ppη′

reaction is two or three orders of magnitude lower than the one for the η produc-
tion [12]. Therefore a cross section in the order of one nanobarn was expected.

The only known values of the total cross section for the pp→ ppη′ reaction
were measured far above threshold at excess energies of Q = 793 MeV and
Q = 2100 MeV , and amount to 0.08 mb (upper limit) and 1.96 mb ± 0.3 mb,
respectively [13]. The extrapolation to excess energies of a few MeV above thresh-
old, as given by the at that time only existing model [14], predicted values smaller
than 50 nb.

The presented in this dissertation experiment was performed by the COSY - 11
collaboration 1 at the proton beam of the COSY-Jülich accelerator [15] by means
of the internal hydrogen cluster target [16] installed in front of a regular COSY
dipole magnet, which acts as a spectrometer. The charged ejectiles were registered
by the COSY - 11 detection system [17], and the η′ mesons were identified via
the missing mass method [18, 19].

The work is divided into four parts. The first one comprises a detailed descrip-
tion of the η′ meson properties and presents the most interesting issues concerning
the physics of this meson. Specifically, the so called mass problem, the probable
gluonium content, the missing resonance problem, and the possible dynamics of
the pp→ ppη′ reaction will be discussed. Most of the presented issues will not be

1List of the COSY - 11 collaborators:
J.T. Balewski, A. Budzanowski, H. Dombrowski, C. Goodman, D. Grzonka, L. Jarczyk,
M. Jochmann, A. Khoukaz, K. Kilian, M. Köhler, A. Kozela, T. Lister, P. Moskal,
W. Oelert (spokesman), I. Pelmann, C. Quentmeier, R. Santo, G. Schepers, U. Seddik,
T. Sefzick, S. Sewerin, J. Smyrski, M. Soko lowski, A. Strza lkowski, C. Thomas, M. Wolke,
P. Wüstner, and D. Wyrwa
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solved by this work. They are mentioned in order to show that the structure of
the η′ is still not established and that studies of this meson are connected with
current and interesting problems of physics.

The second part describes the performed experiment. A discussion of all issues
regarding the data evaluation is preceded by the presentation of the COSY -
11 detection system and the description of the calibration of each detector. In
separate chapters methods of the determination of the luminosity, true beam
momentum, and the detection efficiency are described.

In the third part the evaluated values of the total cross section are shown and
compared with simple model predictions. In the discussion, the recently reported
results obtained at the SATURNE accelerator using the SPES3 spectrometer [20]
are also included. Some conclusions concerning the production mechanism and
the proton-η′ coupling constant will be drawn. Specifically, the influence of the
proton-proton final state interaction on the energy dependence of the total cross
section will be discussed.

The last part comprises appendices, which show explicitly the derivations of
some formulas used in the text. For example, the method of calculating the proton-
proton scattering amplitude is presented, and it is shown, based on the conserva-
tion laws and the Pauli excluding principle, why the transition between 3P0 →1S0 s
partial waves dominates the production close to the kinematical threshold.
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PART I

THE η′ MESON PROPERTIES

When one attempts to construct a
realistic model of nature one is of-
ten confronted with the difficulty
that most simple models have too
much symmetry

G.’t Hooft





2. The η′ meson structure

2.1 Discovery of the η′ meson

First evidence of the existence of the η′ meson has been seen in 1964 in the
reactions K− + p → Λ + neutrals + charged pions investigated independently
by G.R. Kalbfleisch et al. [21] and M. Goldberg et al. [22]. Both experiments
were performed by means of bubble chamber detectors with K− beams having
momenta in the range between 2.3 and 2.7 GeV/c. The η′ meson was identified
as a peak in the missing mass spectrum observed for the K−p→ ΛX0 reactions,
and also as a clear enhancement in the distribution of the effective mass obtained
from the measured five pions in the K−p→ Λπ+π+π0π−π− reaction.

A spectrum of the effective mass of four possible π+π0π− combinations from
the Λπ+π+π0π−π− events resulted in a clean peak corresponding to the η meson
mass [21]. This indicated that the discovered meson decays into π+, π− and η
mesons 1. At present many other decay channels are established, however the
structure of the η′ meson is still not well understood.

2.2 Flavour-SU(3) symmetry

In the year of the discovery of the η′ meson Gell-Mann and Zweig inde-
pendently postulated a hypothetical triplet of quarks (u-up, d-down, s-strange)
[23, 24], which transforms according to the representations of the special uni-
tary group SU(3), and which is fully symmetric under the strong interaction. All
proposed quarks should have the same masses.

In this quark theory mesons are interpreted as bound states of quark-antiquark
systems (qq̄), which transform among themselves as a representation of the prod-
uct of the SU(3) group and its complex conjugate. Therefore they should form

1For completeness some properties of the η′ meson are listed below [25]:
some quantum numbers:

IG(JPC) = 0+(0−+)
mass: mη′ = 957.77± 0.14MeV/c2

width: Γη′ = 0.201± 0.016MeV/c2

main decay modes:
mode Γ/Γη′

π+π−η (43.7± 1.5)%
ρ0γ (30.2± 1.3)%
π0π0η (20.8± 1.3)%
ωγ (3.02± 0.30)%
γγ (2.12± 0.13)%

7



8 The η′ meson properties

the SU(3)-octet and -singlet states.

Three different types of quarks -flavours- allow to construct nine different
quark - antiquark (qq̄) combinations all having the same spin and parity (for
example pseudoscalar or vector nonets). Three of them, namely uū, dd̄ and ss̄
are flavour neutral, and their superposition, in case of the ground pseudoscalar
meson nonet, should correspond to the mesons π0, η8 and η1.

The η1 state being an SU(3)-singlet contains equal amounts of uū, dd̄ and ss̄
combinations [23]:

η1 =
1√
3

(uū+ dd̄+ ss̄). (2.1)

As the η1, the η8 state has isospin equal to zero and comprises the isospin singlet
state (uū + dd̄). On the other hand, the η8 state must be orthogonal to the η1

one, which implies that:

η8 =
1√
6

(uū+ dd̄− 2ss̄). (2.2)

Particles belonging to the pseudoscalar meson octet differ drastically in mass
among each other, which indicates that the flavour-SU(3) symmetry is violated.
Only partly these mass differences can be explained by the much larger mass of
the strange quark compared to the masses of up and down quarks. However, the
flavour-SU(3) classification is still successful, and most of the mesons discovered
so far which consist of only u-, d- and s- quarks could be assigned to the octet or
singlet representation of the SU(3) symmetry group [24].

2.3 Mixing of the η and η′ mesons

The physical η and η′ mesons are mixtures of the pure SU(3)-η1 and -η8 states.
By introducing a pseudoscalar mixing angle Θ one can define the real η and η′

meson wave functions as follows 2:

η = cosΘ · η8 − sinΘ · η1,

η′ = sinΘ · η8 + cosΘ · η1. (2.3)

Knowing the η and η′ meson masses as well as the mass of the η8 state one can
calculate the mixing angle according to the equation derived in reference [26]:

sin2Θ =
m2

η8
−m2

η

m2
η′ −m2

η

. (2.4)

2In this work the mixing notation introduced by Gilman and Kauffman [27] will be used, see
also recent work of Bramon, Escribano and Scadron [28].
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The mass of the η8 state can be obtained from the Gell-Mann-Okubo mass formula
for the pseudoscalar meson multiplet [26, 29]:

m2
η8

=
4

3
·m2

K −
1

3
·m2

π. (2.5)

This relation was inferred under the assumptions that the masses of quarks are not
the same and that the binding energies of quarks within a given meson multiplet
are independent of the quark flavours [26]. The former assumption violates the
SU(3) symmetry, and thus is responsible for the mass splitting within an SU(3)-
octet.

Taking the experimental masses of the π, K, η and η′ mesons and using the
two above introduced equations one obtains the mixing angle for the pseudoscalar
mesons to be about3 Θ ≈ −11◦. However, regarding the chiral corrections4 in the
calculations of mη8 [27] results in Θ = −20◦ 5.

In the remaining part of this section a few other possibilities of determinig the
pseudoscalar mixing angle will be presented.

One of the first experimental determinations of the pseudoscalar mixing angle
Θ was performed by comparing the production cross sections for the π+p→ ∆++η′

and the π+p → ∆++η reactions [30]. The ratio of the cross sections at a beam
momentum of 8 GeV/c led to Θ = −11◦±6◦. For the calculations the relation [30]

σ(π+p→ ∆++η)

σ(π+p→ ∆++η′)
= (kinematical factors) · ctg2(Θ−Θideal) (2.6)

(predicted by the nonet-symmetry) was used, where Θideal = −arctan(
√

2) ≈
−54.7◦ denotes the ideal mixing angle. The up to date analysis based on the ratio
between the reactions π−p→ η′n and π−p→ ηn results in Θ = −17.3± 1.8 [28].

Another way for the determination of the η−η′ mixing angle was the study
of the γγ decay widths for the η and η′ mesons. In this case one can use the
relation [31, 27, 32, 33, 34]:

Γ(η′ → γγ)

Γ(η → γγ)
=
m3

η′ ·
[

1
f8
· sinΘ +

√
8

f1
· cosΘ

]2

m3
η ·
[

1
f8
· cosΘ−

√
8

f1
· sinΘ

]2 (2.7)

where f1 and f8 are the decay constants of the singlet and eighth component of
the octet, respectively (f8 ≈ 1.2·f1) [27, 33]. The investigation of the η′ or η decay

3The minus sign is chosen because the η′ meson is heavier than η and thus should contain
more strangeness. See also comments in reference [35].

4The one loop chiral corrected relation reads: m2
η8

= 4
3m2

K − 1
3m2

π − 2
3

m4
K

(4πfπ)2 ln(m2
K/µ2),

where µ ≈ 1 GeV and fπ denotes the pion decay constant [27]
5The chiral corrected value of Θ is only accidently equal to the one obtained from the linear

Gell-Mann-Okubo relation (mη8 = 4
3 ·mK − 1

3 ·mπ), which is not relevant for the pseudoscalar
mesons [29]. This is because the quark binding energies of these mesons are comparable with
the constituent quark masses, hence one can not add them nonrelativistically.
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widths was performed by the observation of the photons produced in the reactions
e+e− → e+e−η′(η) → e+e−γγ. The mixing angle Θ obtained in such a manner
ranges between −21◦ and −17◦ [33, 36]. The new analysis of the two photon
decays of π0, η and η′ with regard of the SU(3)-breaking effects (mu+md

2ms
= 0.67)

gives Θ = −12.3◦ ± 2.0◦ [28].
It is also possible to infer about the pseudoscalar mixing angle by studying

the charmonium (cc̄) decay into pseudoscalar and vector mesons. In this case it is
conveniently to express the η and η′ meson wave functions in the up, down and
strange quark basis [37, 28]:

η = Xη ·
1√
2

(uū+ dd̄) + Yη · ss̄

η′ = Xη′ ·
1√
2

(uū+ dd̄) + Yη′ · ss̄ (2.8)

where, X and Y describe the nonstrange and strange quarkonium contents, re-
spectively. Combining equations 2.8, 2.3, 2.1 and 2.2 one can relate the mixing
angle Θ to the X and Y parameters [28]:

tanΘ = −
√

2Xη + Yη

Xη −
√

2Yη

=
Xη′ −

√
2Yη′√

2Xη′ + Yη′
. (2.9)

The values for X and Y can be obtained from the study of the various J/ψ decay
modes. For example, the comparison of branching ratios of the J/ψ decay into
ωη and ρ0π0 gives an Xη value as [38]:

B(J/ψ → ωη)

B(J/ψ → ρ0π0)
= X2

η . (2.10)

The η−η′ mixing angle, obtained from the data on the J/ψ meson decay measured
at the MARK III and DM2 detectors, amounts to −16.9◦ ± 1.7◦ [39].

The most up to date value of the pseudoscalar mixing angle Θ, averaged over
all present experimental results, discussed widely in reference [28], amounts to:

Θ = −15.5◦ ± 1.3◦. (2.11)

It is worth noting that this value is centered inbetween the predictions based on
the Gell-Mann-Okubo mass relation (−11◦) and its chiral corrected version(−20◦).

The relatively small octet-singlet mixing angle (Θ = −15.5◦) implies that the
η′ meson is predominantly built out of the SU(3)-singlet state and the η meson
of the SU(3)-octet.

The pseudoscalar mixing angle Θ differs significantly from the ideal mixing
angle Θideal ≈−54.7◦. In case of the ideal η−η′ mixing the η would consist of
nonstrange quarks only, and the η′ would be a pure ss̄ state. The approximately
ideal mixing takes place in the case of the vector mesons φ and ω.
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At the beginning of this section it was stated that the η′ is a mixture of the
SU(3)-η1 and −η8 states. More generally it should be pointed out that this meson
is a mixture of all flavour neutral SU(3) states [40]. However, the mixing between
π0−η and π0−η′, which arises from the mass difference between up and down
quarks is much smaller than the η−η′ one, which is mainly due to the mass dif-
ference between strange and nonstrange quarks [41]. The analysis of the π0−η−η′
mixing, described in reference [40], revealed that the π0−η′ mixing is more than
one order of magnitude smaller than the η−η′ one, and hence can be neglected.

The mixing angle Θ implies univocally the strange and nonstrange quark con-
tents of η and η′ mesons (Xη=Yη′≈cos(Θ+54.7), Yη=−Xη′≈−sin(Θ+54.7)) [28].
Specifically, Θ = −15.5◦ yields:

η = 0.77 · 1√
2

(uū+ dd̄)− 0.63 · ss̄,

η′ = 0.63 · 1√
2

(uū+ dd̄) + 0.77 · ss̄ (2.12)

The obtained similar amounts of strange and nonstrange quarkonium in both η
and η′ mesons suggests that the masses of these particles should be similar in
magnitude. In reality, however, the η′ is almost two times heavier than the η
meson indicating that the structure of η or η′ is more complicated than would be
concluded from the mixture of the SU(3)-flavour states.

2.4 The η′ mass problem

The π mesons possess exactly the same quark structure as the ρ mesons,
however, their masses differ by more than a factor of five. The only difference
between these mesons is their spin configuration. In the π mesons the quark and
antiquark spins are antiparallel whereas in the ρ mesons they are parallel, indi-
cating a significant contribution of the quark spin-spin interaction to the meson
masses. Regarding this effect allows to relate meson mass to quark masses more
generally than given by the Gell-Mann-Okubo mass formula.

The energy shift caused by the spin-spin coupling is proportional to the dot
product of the spins and inversely proportional to the product of the quark con-
stituent masses. Thus one can relate the mass of the qq̄ system to the quark
masses by the following expression [42, 43]:

mq1q̄2 = mq1 +mq̄2 + A ·
~S1 · ~S2

mq1 ·mq̄2

, (2.13)
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Meson Calculated Observed
mass mass

[MeV/c2] [MeV/c2]
π 140 138
K 484 496
η 559 549
η′ 349 958
ρ 780 776
ω 780 783
K∗ 896 892
φ 1032 1020

Table 2.1: Pseudoscalar and vector meson masses [42]. In the calculations the mixing
between SU(3) states was neglected.

where, A is a constant value and ~Si denotes the quark spin 6.

Assuming that the parameter A is the same for the vector and pseudoscalar
meson nonets and fitting equation 2.13 to all mesons from these multiplets results
in the constituent quark masses and the value of the parameter A, (mu =md =
310MeV

c2
, ms =483MeV

c2
, A=(2mu/h̄)2160MeV

c2
) [42]. Now conversely, having these

values one can calculate the meson masses using equation 2.13. Table 2.1 shows the
comparison of experimental and calculated meson masses. The mass formula 2.13
matches simultaneously, within an accuracy of 2%, all mesons from the vector
and pseudoscalar ground nonets except the mass of the η′ meson, which is
predicted to be almost a factor of three smaller than the observed one7. According
to equation 2.13, even if the η′ meson would be a pure ss̄ system, its mass would
amount to ∼768 MeV/c2, which is still almost 200 MeV/c2 less than the observed
η′ mass. The difficulty in describing the η′ mass becomes even more surprising
when one realizes that not only the masses of pseudoscalar or vector mesons are
well described in terms of quark models but also the masses of other hadrons like
tensor mesons [44] or baryons [29].

There exist many theoretical models, mainly connected with the proposal of
G.’t Hooft [45] based on the “U(1) anomaly”, trying to explain the large η′ meson
mass. For example, one considers the two-gluon annihilation process gg ←→ qq̄ as
a contribution to the SU(3)-flavour singlet state [46, 51, 52]. Because of the small
pseudoscalar mixing angle such an additional gluon-induced interaction should
mainly affect the properties of the η′ which is predominantly built out of the

6The dot product ~S1 · ~S2 amounts to 1
4 h̄2 for the vector mesons and −3

4 h̄2 for the pseudoscalar
ones.

7The present values of the meson masses [25] differ within 1% from the ones in reference [42]
shown in table 2.1
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SU(3)-flavour singlet state. In order to reproduce the observed η′ mass, a gluonium
component ranging between 29% and 53% is required [53].

Similarly the analysis of the production cross sections of the η and η′ mesons in
the pion-proton and kaon-nucleon collisions, revealed that the predictions under
the assumption that the η and η′ are mixtures of the SU(3)-flavour states, disagree
with the experimental results [54, 55].

2.5 Contents of glueball in the η′ meson

The additional admixture in the η′ wave function could be for example qq̄ state
made of charmed or heavier quarks. However, the appreciable contents of the
cc̄ is excluded by the observed J/ψ → ηγ and J/ψ → η′γ decay rates [55].
Another possibility is that the η′, additionally to the combination of uū, dd̄ and
ss̄ quarkonium states, contains also their radial excitations [55, 56].

It is also possible that other states, predicted by the QCD theory, contribute
to the η′ wave function, as for example, hybrids containig glue like qq̄g or even
pure glue states like gg or ggg called glueballs [44]. Thus, generally the η and
η′ wave function may be described as a linear combination of the quarkonium,
radially excited qq̄ states, gluonium, or other exotic objects [43, 57, 51]:

η = Xη ·
1√
2

(uū+ dd̄) + Yη · ss̄+ Zη ·G

η′ = Xη′ ·
1√
2

(uū+ dd̄) + Yη′ · ss̄+ Zη′ ·G, (2.14)

where G denotes the (gg) gluonium state as proposed by E. Kawai [57] and J. Ros-
ner [43], combination of radial excited qq̄ states as proposed by H. Lipkin [56],
or hybrids. The coefficients X, Y and Z must satisfy the normalization condition
X2 + Y 2 + Z2 = 1.

Investigating the two body decays of the J/ψ meson into a vector and a pseu-
dovector meson (φη, ωη, ρ0η, φη′, ωη′, ρ0η′) the MARK III collaboration has es-
tablished that [38]:

X2
η + Y 2

η = 1.1± 0.2, X2
η′ + Y 2

η′ = 0.65± 0.18, (2.15)

which indicates that the η meson is saturated by its quarkonium contents while
the η′ is not, Z2

η′ = 0.35. Thus, the η′ meson may contain as much as 35% of
other than qq̄ components. However, no answer about the nature of the missing
admixture was obtained. The analysis was based on the assumption that the
J/ψ meson annihilates into gluons or virtual photon which further convert into
mesons.

Similar measurements of the charmonium decay were carried out later by the
same group [37] as well as by the DM2 collaboration [58]. The data were analyzed
including an additional disconnected diagram in the J/ψ decay. This analysis
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has yielded that both the η and η′ can be regarded as a pure combination of qq̄
systems. For example, in the case of the η′ it was found that |Zη′|2 ≈ 0.01 [37, 58].

The above examples show that the amount of the gluonic component within
the η′ meson is still not established, and it is also not obvious how to deduce the
relative gluonic and quark contributions in a model independent way [59].

Another interesting analysis was performed by K. Geiger et al. [60]. They
have assumed that the η and η′ mesons are mixed with η(1440), and that all are
composed of glueballs, strange and nonstrange quarkonium and of the qq̄ radial
excited states, similarly as in equation 2.14. They have identified the η(1440) as a
glueball state with a 25% admixture of quark-antiquark components. The η meson
was found to be consistent with the pure quarkonic components with dominant
nonstrange quark content, and the η′ was determined to be mostly built out of
strange quarks with an 18% admixture of gluonium. However, the η−η′−η(1440)
mixing ought to be revisited in view of the new results [61, 62] suggesting that
the η(1440) is separated into two resonances.

The connection of the η′ to glue can also be inferred from the decay of the
scalar meson f0(1500), which is supposed to be a glueball-qq̄ mixture [61], and
which decays more frequently into ηη′ than into ηη [63].

Another indications of the gluonic contents of the η′ mesons come from the
measuremets of the beauty particles decays performed by the CLEO collabora-
tion [64, 65, 66]. The observed anomalously large branching ratio in the inclusive
B → η′X decays suggests the strong coupling of the η′ to gluons. Predictions of
the standard model for the b-quark decays into light quarks, lead to results which
are two orders of magnitude smaller than the data [67]. Specifically, the CLEO
measurements of the B → η′K decay imply a significant gluon or charm content
of the η′ meson [67]. As far as charm is concerned the suggested mechanism is
that the b-quark decays into cc̄s states and that further virtual cc̄ converts into η′.
However, this may be possible only if the η′ meson contains significant amounts
of cc̄ [67]. On the other hand, as already mentioned, according to reference [55]
the charmonium contents of the η′ meson should be negligible.

One may conclude that the structure of the η′ meson is still not well established
and requires further experimental and theoretical investigations. Since the up to
date knowledge of the η′ meson is mostly based on studying of the decay of
heavier mesons it would be very important to investigate the production of the η′

for example in hadronic collisions.



3. Dynamics of the pp→ pp Meson
reaction

An essential point of the study of the pp → pp Meson reactions is the un-
derstanding of the reaction mechanisms and as a consequence the insight into the
meson structure. The advent of the cooler storage rings enabled such investiga-
tions very close to the kinematical threshold, where the reaction may be described
by only a few partial waves, which simplifies the theoretical analysis. The discus-
sion of the possible processes which may contribute to the production of the η′

meson in the proton-proton collision, will be preceded by the short review of the
mechanisms, which are accounted for the creation of other neutral pseudoscalar
mesons like π0 and η.

3.1 Production mechanisms of the π0 and η

mesons in the proton-proton collision

The question which processes (on the mesonic level) are responsible for the
π0 meson production was considered already in 1966 by D.S. Koltun and A. Re-
itan [68]. The authors have calculated that the direct pion production on one
of the protons, as shown in Figure 3.1a, plays the most important role in the
pp→ ppπ0 reaction. However, the exact measurement of the total cross section
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Figure 3.1: Feynman diagrams for the pp→ ppπ0 reaction near threshold: (a) direct
term, (b) rescattering term, (c) production through the heavy-meson exchange,
(d) resonant term, “ISI” and “FSI” denote proton-proton initial and final state inter-
action, respectively.

for the pp→ ppπ0 reaction performed at IUCF [69, 70] and CELSIUS [71] revealed
that this mechanism can not account for more than 20% of the total reaction am-

15
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plitude. Subsequent theoretical investigations showed that the inclusion of a pro-
cess illustrated in Figure 3.1b, when the pion is produced on one proton and then
scattered on the other one, increased the amplitude essentially but not enough
to describe the data [72]. The further enhancement of the production amplitude
comes from the exchange of heavy mesons shown in Figure 3.1c, where the σ and
ω mesons [72, 73] exchange plays the dominant role. There exist also theoretical
calculations indicating that the close to threshold π0 production can be described
without regarding the heavy meson exchange, provided that one takes the πN
off shell amplitudes [74] into account. Finally, it is shown in reference [1] that
both mechanisms, the heavy meson exchange and the off-shell pion rescattering
are necessary in order to obtain agreement with the experiments. The resonant π0

meson production, shown in Figure 3.1d, with the formation of the intermediate
∆(1232) state is strongly suppressed close to threshold, because of conservation
laws1.

In contrary, the creation of the η meson in the pp→ ppη reaction is dominated
by the intermediate S11(1535) state (see Figure 3.2), which further decays into η
and proton2 [75, 2, 76, 77]. The S11(1535) resonance is excited mainly by the
exchange of the π, ρ or η mesons [4, 2, 77].

p

p

p

p

FSI

ISI

η

Ν* (1535)πο,η,ρ,...

Figure 3.2: Dominant term for the pp→ ppη production amplitude.

The production mechanisms for π0 and η are appreciably different, however,
in both cases the observed energy dependence for the total cross section close to
threshold is determined predominantly by the phase space factors and the final
state interaction of the outgoing particles [78, 79].

1Close to threshold all particles are produced in the relative angular momentum of zero.
The ∆(1232) resonance (I(JP ) = 3

2 (3
2

+)) decays into a p-wave πN system and can therefore
contribute to s-wave meson production through a recoil term only [7].

2The branching ratio of the S11(1535) resonance into Nη system amounts to 30%−55% [25].
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3.2 Possible mechanisms of the pp→ ppη′

reaction

Similarly as depicted in the π0 case, the η′ meson can be produced via mechanisms
depicted in Figures 3.3a-d. Since the η′ is much heavier than the π0 meson and its
production requires much larger four momentum transfer between the interacting
protons, it is expected that the creation through the heavy meson exchange, as
illustrated in Figure 3.3c, will be even more significant than in the π0 case. The
resonant production via the excitation of a S11 resonance, can contribute already
at the reaction threshold. However, in contrary to the η meson case, none such
resonance is known, which may decay into an s-wave η′N system 3. Therefore one
does not expect that the production via the excitation of the baryonic resonance
will be appreciable. The only resonance which could be considerd here is the
D13(2080) [80] one 4. However, due to its spin 3

2
, its contribution should be

suppressed in the close to threshold pp→ ppη′ reaction.
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Figure 3.3: Feynman diagrams for the pp→ ppη′ reaction near threshold: (a) direct
term, (b) “rescattering” term, (c) production through the heavy-meson exchange,
(d) excitation of an intermediate resonance.

For the presented in this work measurement of the pp→ ppη′ reaction, we can
not observe an appreciable influence of the probable N∗ resonance on the total
cross section energy dependence, because the range of the covered excess energy
is smaller than ∼ 4 MeV which is to be compared with a typical resonance
width of about 100 MeV . However, the absolute values for the total cross section
should differ significantly, depending whether the production is resonant or not.
Unfortunately, till now, there exist no quantitative predictions of the production
cross section for the pp→ ppη′ reaction. At present, even the contribution to the

3In the relativized quark model approach one predicts many nonstrange baryon resonances
which should decay into η′ [81, 82]. For instance, S11(2030), D13(2055), D13(2080), S11(2090)
or D13(2095). The lack of the experimental confirmation of many predicted resonances in the
2 GeV/c2 mass region is refered to as a missing resonance problem [80].

4The study of the γp→ η′p reaction revealed the existence of the D13(2080) resonance [80,
50], which can decay into η′ and proton.
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total cross section from the direct production process, shown in Figure 3.3a, can
not be established because of the large uncertainty of the coupling constant for
the NNη′ vertex, which is discussed in the next section.

Additionally to the mechanisms which govern also the π0 or η production, in
case of the η′ meson two other processes, shown in Figure 3.4 are proposed [7, 5,
83]. According to Figure 3.4a the η′ meson would be emitted by a virtual ω, ρ,
or σ meson, which couples strongly to the η′. The strong coupling is manifested
by the decay of the η′ into ργ or ωγ (see page 7). The emission showed in
diagram 3.4a may be understood as an inverse process to the η′ decay. For
instance, the ωωη′ vertex is determined by the η′ → ωω∗ → ωγ decay 5, whereas
the σηη′ corresponds to the η′ → ππη decay, with σ describing the two pions.

p p

p p

η’

g g

b)a)
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p
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ω
σ

ω
η

ρ ρ

η
,

Figure 3.4: Diagrams for the pp→ ppη′ reaction near threshold: (a) emission from the
virtual particle, (b) production via a fusion of gluons.

Since the η′ meson is essentially built out of the SU(3)-flavour singlet state
η1, which can couple to the purely gluonic states [47], it can also be produced in
the fusion of gluons emitted from the exchanged quarks of the colliding protons,
as shown in Figure 3.4b [5]. An evaluation of the contribution of this production
mechanism to the total cross section would enable the insight into a probable
gluonic contents of the η′ meson. Unfortunately, at present there are no theo-
retical calculations concerning this mechanism. There are some plans to evaluate
the meson-exchange mechanisms based on the measurements of the γp → pη′

reaction, where a gluon fusion is not expected. Next, having the parameters for
the meson-exchange graphs fixed one could calculate the cross section for the
pp→ ppη′ reaction. The probable discrepancy between the prediction based on
the meson-exchange currents and the experimental data would reveal information
about the gluons fusion mechanism [7].

3.3 NNη′ coupling constant

In the effective Lagrangian approach [80, 50] the strength of the nucleon-η′

coupling is driven by the quantity gNNη′ called the NNη′ coupling constant, which

5The ω∗ denotes here the virtual ω
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comprises the information about the structure of the η′ meson and the nucleon.
The knowledge of the coupling constant is necessary in the calculation of the
production cross section if one considers the Feynman diagrams as illustrated in
Figures 3.3. Specifically, the interaction Lagrangian describing the NNη′ produc-
tion vertex from diagram shown in Figure 3.3a reads [80]:

LNNη′ = gNNη′

[
−iǫN̄γ5Nη

′ + (1− ǫ) 1

2M
N̄γµγ5N∂

µη′
]
, (3.1)

where, the γ,s indicate Dirac matrices and N and M denote the free nucleon field
operator and the nucleon mass, respectively.

The first and second terms in equation 3.1 describe the pseudoscalar and pseu-
dovector coupling, respectively. The value of the parameter ǫ indicates the rel-
ative contribution of these couplings. Till now the η′-nucleon coupling has not
been determined experimentally. The main difficulty is due to the fact that usu-
ally the direct production on the nucleon is either associated with the production
through baryonic resonances, as in the case of the γp → η′p reaction, or through
the exchange of other mesons. Therefore, if the direct production mechanism is
not dominant it is not possible to extract the NNη′ coupling without the clear
understanding of the other mechanisms.

Assuming that the η and η′ mesons are mixtures of the SU(3) singlet and octet
states, one can relate the NNη and NNη′ coupling constants by the following
equations [80]:

gNNη = cosΘ · gNNη8 − sinΘ · gNNη1

gNNη′ = sinΘ · gNNη8 + cosΘ · gNNη1, (3.2)

where, gNNη8 and gNNη1 stand for the SU(3)-octet and singlet coupling constant,
correspondingly. Further, assuming that the strange quark content in the nucleons
is negligible one obtains that

gNNη1

gNNη8
≈
√

2 [80]. This is because, the nonstrange

quark content in the η1 is by a factor of
√

2 larger than in the η8 state - compare
equations 2.1 and 2.2. It follows that:

gNNη′ =
sinΘ +

√
2cosΘ

cosΘ−
√

2sinΘ
· gNNη

Θ=−15.5◦(page 10)
======================== 0.82 · gNNη. (3.3)

The measurements of the γp→ pη [84, 85] reaction have yielded that:

0.2 ≤ gNNη ≤ 6.2, (3.4)

whereas the comparison of the π−p→ ηn and π−p→ π0n reaction cross sections
implies [84]:

5.7 ≤ gNNη ≤ 9.0, (3.5)

and the estimation based on SU(3) relations 6 gives:

3.8 ≤ gNNη ≤ 6.7. (3.6)

6In the SU(3)-flavour model one obtains [86, 84] gNNη8 = 1√
3
(3− 4αp)gNNπ,

where, 0.59 ≤ αp ≤ 0.66 and g2
NNπ/4π = 14.4, which gives 2.8 ≤ gNNη8 ≤ 5.0. Next, applying

equation 3.2 one obtains the relation 3.6.



The above inequalities and equation 3.3 lead to a following range for the gNNη′

value:
4.7 ≤ gNNη′ ≤ 5.1, (3.7)

which is to be compared to the η′ coupling determined from the fits to low
energy nucleon-nucleon scattering in the one boson exchange models amounting
to gNNη′ = 7.3 [87].

On the other hand, the gNNη′ coupling constant determined via dispersion
methods [88] turns out to be smaller than 1, gNNη′ < 1, which is in contradiction
to the above estimations.

The gNNη′ coupling constant is also related to the issue of the total quark
contribution to the proton spin (∆Σ). The approximate equation derived in ref-
erence [8] reads:

∆Σ = ∆u+ ∆d + ∆s =

√
3fη′

2M
gNNη′ (3.8)

where, fη′ ≈ 166 MeV [8] denotes the η′ decay constant and M stands for the
proton mass. ∆u, ∆d and ∆s indicate the contributions from up, down and
strange quarks, respectively 7. The total contribution of the quarks to the proton
spin amounts to ∆Σ = 0.38+0.09

−0.10 [90]. Applying this value in equation 3.8 one
obtains gNNη′ = 2.48+0.59

−0.65.
In any case, the coupling for the NNη′ vertex turns out to be essentially

smaller than the NNπ one with gNNπ = 13.45 [86, 97].
Exact measurements of the gNNη and gNNη′ coupling constants would test

equation 3.3 and could verify the assumption used when deriving this equation,
namely regarding η and η′ as mixed SU(3)-flavour states and the neglect of the
strange quark content within nucleons.

7Contribution of quarks heavier than the strange quark are normally not considered, but
I. Halperin and A. Zhitnitsky suggested [89] that the intrinsic charm component of proton
may also carry a significant amount of the proton spin. The quark and gluon contributions
to the proton spin are widely discussed in the literature [90, 91, 92, 93, 94, 95, 96, 8] based
on measurements of the spin asymmetries in deep-inealstic scattering of polarised muons on
polarised protons.
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4. Method of the measurement

4.1 Experimental setup

The experiment was performed at the cooler synchrotron COSY-Jülich [15]
which accelerates protons up to a momentum of 3400 MeV/c. The thresh-
old momentum for the pp→ ppη′ reaction is equal to 3208.3 MeV/c. About
1010 accelerated protons circulate in the ring passing 1.6 · 106 times per second
through the H2 cluster target [16] installed in front of one of the dipole magnets,
as depicted schematically in Figure 4.1. The target1 having a density of about
5 · 1013 atoms/cm2 is realized as a beam of H2 molecules grouped inside clusters
of about 104 atoms.

At the intersection point of the cluster beam with the COSY proton beam
the collision of protons may result in the production of the η′ meson. The
ejected protons of the pp→ ppη′ reaction, having smaller momenta than the beam
protons, are seperated from the circulating beam by the magnetic field. Further
they leave the vacuum chamber through a thin exit foil 2 and are registered by
the detection system consisting of drift chambers and scintillation counters as
depicted in Figure 4.1.

The measurement of the track direction by means of the drift chambers, and
the knowledge of both the dipol magnetic field and the target position allow to
reconstruct the momentum vector for each registered particle. The time of flight
measured between the S1 (S2, S7) - and the S3 scintillators gives the particle
velocity. Having momentum and velocity for each particle one can calculate its
mass, and hence identify it, for example to be a proton. The knowlegde of the
momenta of both protons before and after a reaction allows to calculate a mass
of a not observed particle or system of particles in the outgoing channel, which in
case of the pp→ ppη′ reaction should be equal to the mass of the η′ meson.

The energy loss information from the S1, S2, S7 and S3 scintillation detectors
is used to verify the efficiency of the track reconstruction in the drift chambers in
the case of two close tracks.

The scintillation detector S4 and the position sensitive silicon pad detector Si
are used for the detection of one of the elastically scattered protons. The second,
elastically scattered proton is registered in coincidence with the first one by both
of the drift chambers and the S1 scintillation counter.

1The H2 cluster target is described in details in references [16, 98]. The dimensions of the
beam-target overlap are discussed in chapter 9

2The exit foil consists of 30 µm layer of aluminium foil and 300 µm of an carrier material
(C89.4%, N4.1%, O6.2%, Cl0.3%) with the averaged density of 2.1 g/cm3 [17]
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Figure 4.1: a) Schematic view of the COSY-11 detection setup [17]. The cluster target
is located in front of the accelerator dipole magnet. Protons from the pp→ ppη′ reaction
are bent by the magnetic field of the dipole magnet, whereas the beam particles keep
circulating in the COSY ring. The decay products of the η′ meson are not shown, since
the analysis is based on the measurement of the four-momenta of the outgoing protons.
Shown tracks indicate the space limits expected for the protons ejected after the
pp→ ppη′ reaction at a beam momentum of 3.222 MeV/c. The produced protons leave
the vacuum chamber through the thin exit foil and are detected: i) in two drift chamber
stacks D1, D2, ii) in the scintillator hodoscopes S1, S2, S7, iii) and in the scintillator
wall S3.
For the measurement of the elastically scattered protons, additionally, scintillation de-
tector S4 and silicon pad detector Si are used in coincidence with the S1, D1 and D2
detectors.
b) In the left-low corner the schematic view of the cluster target is depicted.
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4.2 Beam momenta

The experiment was divided into two periods with different beam tunings.
In the first period the beam momentum has been changed continuously during
the measurement cycle from Pbeam = 3.200 MeV/c to Pbeam = 3.224 MeV/c.
Each cycle lasted ten minutes, and the constant growth of the beam momentum
amounted to ∆P

∆t
= 40 KeV

c·s . For each event the time past from the beginning of
the acceleration cycle was written on tape. Therefore it was possible to analyze
each event with the appropriate nominal beam momentum.

Next, the measurement was performed for three discrete nominal beam mo-
menta settings. Namely, two above the η′ meson production threshold at:
Pbeam = 3222 MeV/c ( 13.7 MeV/c above threshold ≡ Q ≈ 4.4 MeV ) and
Pbeam = 3214 MeV/c ( 5.7 MeV/c above threshold ≡ Q ≈ 1.8 MeV ),
and one about 8 MeV/c below threshold at Pbeam = 3201 MeV/c. Q denotes the
centre-of-mass excess energy.

In the case of the measurement with a constant beam momentum a special
COSY - 11 beam optics [17, 99] was used which minimized the horizontal beam
dimension to the width of the cluster target. The influence of beam parameters
on the measured particle momenta are discussed in chapter 9.3.

4.3 Principle of the cross section measurement

The simplest observable, characterizing pp→ ppη′ reaction, is the cross section
defined as the pp→ ppη′ reaction rate normalized to the target density and to the
number of protons passing through the target in the unit of time. The normalizing
factor is called luminosity 3. The cross section for the pp→ ppη′ reaction at a given
excess energy Q can be expressed as:

σ(Q) =
N(Q, T )/Eeff(Q)

L(T )
(4.1)

where, N denotes the number of η′ mesons produced and identified during the
time T , Eeff gives the detection efficiency, and L(T ) stands for the integrated
luminosity, which is monitored by the measurement of the elastically scattered
protons.

In the following, - after the description of the particular detectors , their
calibration and the data evaluation, - the method of establishing N , L, Q and
Eeff will be presented.

3Taking into account the target density and the beam current (see section 4.1) one can roughly
estimate the obtained luminosity to be l = 5 · 1013 · 1.6 · 106 · 1010 cm−2s−1 = 8 · 1029 cm−2s−1

for typical conditions. However, during the measurment it varied within a factor of two.
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5. Detection system

5.1 Drift chambers

The chamber stack D1 standing closer to the bending magnet contains six
detection planes: two planes with vertical wires and four with inclined wires,
whereas the D2 stack contains eight planes as depicted in Figure 5.1a. The wires
in consecutive pairs of planes are shifted by half of the cell width in order to
resolve the left-right position ambiguity with respect to the sense wire. The drift
cells are of the graded field type as shown in Figure 5.1b.
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Figure 5.1: (a) Orientation of wires in the drift chamber D2. The smaller drift cham-
ber D1 contains six planes which are indicated by asterisks. (b) Cell structure and
voltage distribution. The sense wires are made of 20µm thick gold-plated tungsten, and
for the field and cathode wires 50µm Cu-Be was used. Pictures a) and b) are taken
from [17].

A charged particle passing through the drift cell produces ionization of elec-
trons which drift towards the sense wire. The measurement of the drift time 1

1The drift time is measured by means of LeCroy multihit TDC 1877 and TDC 1879 mod-
ules [100] with the pulses from the drift chamber as a start signal and a trigger pulse as a
common stop.
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allows the determination of the distance between the sense wire and the parti-
cle trajectory. A relationship between the distance X from the sense wire and
the drift time, called the time-space calibration 2 (see fig. 5.2b), was established
from the experimental data. For all measuring periods lasting a few hours each, a
new calibration was performed, in order to avoid fluctuations of the drift velocity
caused by the atmospheric pressure and the gas mixture changes 3.
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Figure 5.2: (a) Principle of the correction of the time-space calibration. X denotes
the distance from the sense wire obtained from the measured drift time applying the
time-space calibration. (b) Time-space calibration i.e. relationship between the
distance from the sense wire and the drift time.

The calibration was calculated by the series of iterative improvements which
were performed in the following way: Having an approximate time-space function 4

one calculates distances X of the particle trajectory to the sens wire in each
detection plane and fits to the obtained points a straight line. Now assuming
that the fitted line corresponds to the real particle trajectory one calculates the
deviation (∆X) between the measured and the fitted distances of tracks from
the sense wire as shown in Figure 5.2a. From a sample of experimental data
the averaged deviation ∆Xmean is established as a function of the drift time (see
Figure 5.3a), which is further used for the correction of the time-space relation.
Next, the improved time-space function is used for the track reconstruction. The
whole procedure is repeated until these corrections are much smaller than the
position resolution of the chambers.

The position resolution is obtained from the chi-square distribution of the

2After the correction for the time offsets, the time-space calibration was averaged over all
cells within one plane. However, it was performed for each detection plane separately.

3The chambers were operating with a gas mixture of 50% argon and 50% ethane at atmo-
spheric pressure.

4The first approximation of the time-space calibration was calculated according to “the uni-
form irradiation method” described in [101, 102].
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deviations ∆X normalized to the number of degrees of freedom defined as follows:

χ2 =
N∑

i=1

∆X2
i

σ2
/(N − 4), (5.1)

where, N denotes the number of planes which registered a signal, σ denotes the
position resolution of the chambers and ∆X is defined in Figure 5.2a. Since, the
mean of the normalized chi-square distribution must be equal to unity one can
deduce the value of σ, which in this experiment amounted to 0.25 mm (rms) 5.
Figure 5.3b shows an example of the chi-square distribution obtained with σ =
0.25 mm.
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Figure 5.3: (a) Corrections to the time-space relationship. The time-space calibration
optimized for one experimental run was used to the data from another run. One observes
the change of the drift velocity between these runs. (b) χ2 distribution defined in
equation 5.1.

The registered signals from two particles being too close together may be
undistinguishable from the signals produced by one particle. If the distance ∆
(see Figure 5.4a) between particles crossing the same cell at the same time is
smaller than some minimum value, called the two-track-resolution then only one
signal will be registered by the corresponding sense wire. Thus, if this happens
in many planes simultaneously, the reconstruction of both tracks is impossible
and instead of two tracks only one is reconstructed. The reconstruction efficiency,
discussed in chapter 9, depends strongly on the two-track-resolution. Therefore
the determination of this parameter is crucial for the calculation of the absolute
cross section.

In order to estimate the two-track-resolution for a given plane of the drift cham-
ber, a sample of events with two tracks was studied. For each event the distance
between the tracks within the studied plane, and the number of real signals in this
plane was calculated. Furthermore, for a given distance the ratio of the number of
events with two signals to the number of all two track events was computed (see
for example Figure 5.4b). For each event with the distance between tracks (in

5rms stands for root-mean-square value ≡ σ.
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the studied plane) larger than the two-track-resolution at least two signals should
be observed. Thus this ratio should be equal to one for distances larger than the
two-track-resolution and equal to zero for smaller distances. Figure 5.4b shows
that for distances larger than 4 cm, which corresponds to the relevant dimension
of the drift chamber cells, this ratio is equal to one. For smaller distances the
ratio is about 0.96 and at 0.3 cm drops suddenly to zero. Thus, Figure 5.4b indi-
cates that the two-track-resolution of the studied plane is equal to 3.0± 1.0 mm,
which agrees with the estimation given in [101]. The same value was obtained for
all planes of the drift chambers used in this experiment.
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Figure 5.4: (a) A schematic view of two subsequent planes of the drift chamber. If
the distance between two tracks in a given plane is smaller than some minimum value,
then only one signal will be detected on the sense wire in this plane. (b) The number
of events with two tracks and two hits divided by the number of events with two tracks
as a function of distance between tracks in the seventh plane of the drift chamber D2.

5.2 Scintillation detectors

5.2.1 S1, S2 and S7 hodoscopes

The scintillation hodoscope S1 consists of sixteen scintillation 6 modules read
out at both sides, via twisted strip light guides, by photomultipliers 7. The mod-
ules with dimensions 45 x 10 x 0.4 cm3, as shown in Figure 5.5a, are arranged ver-
tically with a small overlap (∼ 1 mm) in order to avoid “holes” in the geometrical
acceptance. For each photomultiplier the integrated charge of the pulse (ADC),
as well as the time interval between a common reference timing (trigger signal)
and the time of the signal arrival to the TDC 8 unit was measured.

6For all scintillation detectors in the COSY - 11 detection system a Bicron BC 404 ternary
scintillator material is used [103].

7For the S1, S3, S4 and S7 detectors a Thorn EMI 9954B [104] photomultipliers are used, and
the scintillators of the S2 detector are read out by photomultipliers Hamamatsu R 1635-02 [105].

8TDC — time to digital converter. The COSY - 11 experiment make use of a FASTBUS
crate equipped with LeCroy ADC 1881 and TDC 1875A [100] for the signals from scintillators.
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The sum of the signals charge from the upper and the lower photomultipliers
for monoenergetic particles is approximately constant, to an accuracy of about
10%, independently of the impact position [106]. Therefore the energy loss was
calculated as being proportional to this sum. The resolution of the energy loss
measurement for all scintillation detectors is about 20%, see Figures 9.5 in chap-
ter 9.6.
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Figure 5.5: (a) Schematic view of a separate scintillation segment of the S1 detector.
LG stands for light guide and PM for photomultiplier. (b) An example of the
time walk effect for the upper part of one module of the S1 detector. 1√

ADC
is given

in arbitrary units. The time walk values are negative because of the still wrong time
offests at this stage of the analysis (see next section). (c) The velocity of the light
signal in the S1 scintillator. The same time difference as in b), but after a time walk
correction, versus the vertical position in the S1 detector.

Since signals were discriminated by the leading edge discriminators [107] the
registered time varied with the signal amplitude. This effect, reffered to as a time
walk was corrected assuming a linear dependence between the time walk and the
inverse of the square root of the signal charge 1√

ADC
[108]. In order to measure the

time walk, the time-of-flight between the S1 and the S3 counters was compared
with a time-of-flight deduced from the reconstructed particle momentum 9, and
plotted as a function of 1√

ADC
as shown in Figure 5.5b. For the time walk cor-

rection, only events with a certain constant distance between the hit position and
the scintillator edge were taken into account. This allowed to avoid the biassing
caused by the time dependence on the impact position. Parameters of a straight
line fitted to the points of the scatter plot were used in the data analysis for the
time walk correction, which was performed for each photomultiplier (discriminator
channel) separately.

After the reduction of the time walk the velocity of the light pulse in the scin-
tillator was calculated for each detection segment. Again the difference between

ADC stands for charge to digital converter.
9The momentum reconstruction was performed by the back-tracking of the (measured by the

drift chambers) particle trajectory to the target point.
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time-of-flights calculated by two different methods were studied as a function of
the vertical hit position in the S1 scintillator as depicted in Figure 5.5c. The
velocity was calculated for each segment separately. The obtained values oscillate
around 16.0± 0.5 cm/ns.

The start time for the time-of-flight was calculated as a weighted mean of times
measured by the upper and lower photomultiplier. The weights were computed
as the inverse of the squared time resolution (w = 1

σ2 ), which changes 10 with the
distance between the hit position of the counter and the photomultiplier.

Similar calculations were performed for each of the S2 and S7 detection seg-
ments. The S2 detector, in the same way as S1, consists of sixteen scintillation
modules with dimensions of 45 x 1.3 x 0.2 cm3, and the S7 is built out of eight
segments each with dimensions of 100 x 10 x 0.4 cm3 positioned in two rows as
depicted in Figure 4.1.

5.2.2 S3 detector and the time-of-flight calibration

The S3 detector delivers the stop signal for the time-of-flight measurement. It
consists of a large area non-segmented scintillation wall of dimensions 220 x 100 x 5 cm3

viewed by a matrix arrangement of 217 photomultipliers [109, 110, 17] as shown
schematically in Figure 5.6.
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Figure 5.6: Schematic view of the S3 scintillation detector. A side view (left part). The
photomultiplier matrix together with the dimensions of the scintillation wall (middle
part). Principle of the light collection (right part).

An impinging charged particle passing through the scintillator produces a scin-
tillation light (see Figure 5.6). The amount of light registered by a given photomul-
tiplier decreases rapidly with increasing distance to the particle’s impact position.
Therefore, only a few photomultipliers register enough light to produce a signal

10The changes of the time resolution with the hit position of the counter were minimized be-
cause the edges of the scintillator were not used as seen in Figure 5.5c. Note that the scintillator
covers values of Ys1 from −22.5 cm to 22.5 cm.
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higher than the discriminator threshold. This feature allows for the identification
of the number of registered particles and for the assignment which photomultiplier
belongs to which particle. For brevity the group of the photomultipliers assigned
to one particle will be called cluster.

Using the signal charge distribution among photomultipliers one can not re-
solve two particle tracks if they are closer than 11 cm. Such cases can be resolved,
however, provided that the difference between impact times for registered particles
is significantly larger than the time resolution.

A signal charge given by a photomultiplier depends on the particle energy loss,
distance between the hit position and the photomultiplier, and on the photomul-
tiplier gain. Figure 5.7a shows the dependence between the signal charge and the
distance between the photomultiplier and the particle hit position. Having this
dependence and knowing the photomultiplier gain one can calculate the energy
loss from each photomultiplier and takes the average as the result. Alternatively,
the particle energy deposition can be derived as being proportional to the sum of
the ADC values from photomultipliers of an appropriate cluster.
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Figure 5.7: (a) A natural logarithm of the ADC value normalized to the path lenght in
the scintillator, in arbitrary units, as a function of a distance between the photumulti-
plier and the position where particle crossed the scintillation wall. The picture was done
for protons with velocities in the range of [0.73 · c : 0.77 · c]. (b) Time walk effect in
the S3 detector. Difference between TOF measured between S1 detector and a chosen
photomultiplier in the S3 detector and TOF calculated from the reconstructed particle
momentum as a function of the inverse of the square root of the signal charge ( 1√

ADC
)

in the studied photomultiplier. The line shows the mean time walk values calculated
for each ADC channel, 1√

ADC
is given in arbitrary units.

The hit position is calculated as the centre-of-gravity of the pulse charges of the
photomultipliers from an appropriate cluster. The position resolution obtained in
the present experiment amounts to 1.5 cm (rms) as long as the particles are not
closer than 11 cm.

The stop of the time-of-flight measurement is calculated, for each cluster sepa-
rately, as the weighted average of times obtained from the participating photomul-
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tipliers. The signal time from each photomultiplier is corrected for the time walk
effect and the time needed by the light signal to arrive at the photomultiplier. The
dependence of the time walk on the inverse of the square root of the signal charge
( 1√

ADC
) is not linear in the whole range of the ADC values 11, see Figure 5.7b.

Therefore, unlike in the S1 case, the correction was done by calculating the mean
time walk for each ADC value, as given by the line in Figure 5.7b. This figure
shows also that the time resolution changes with the signal amplitude. That is
why, the appropriate weights - depending on the charge of the signal - were used
for the calculation of the mean time in the cluster.
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Figure 5.8: (a) The same time difference as in Figure 5.7b, but after the time walk
correction, versus a photomultiplier ID of the S3 scintillator. The picture shows offsets
only for two columns of photomultipliers. Note that the photomultipliers with numbers
170 and 179 have registered essentially less events than others. This is because they are
positioned at the upper and lower scintillator edge (see Figure 5.6). (b) Principle of
the time-of-flight measurement between the S1 and S3 scintillation counters. “D” stands
for discriminator.

In order to obtain the absolute values of the time-of-flight it is necessary to
adjust relative time offsets among all photomultipliers within each scintillation
detector as well as the relative offsets between different detectors. Denoting the
real time when a particle crosses the S1 detector by ts1 and similarly ts3 for
the S3 detector the time-of-flight reads: tof = ts3 − ts1. Figure 5.8b depicts
schematically the principle of the time-of-flight measurement. According to this
figure the experimental TDC values can be expressed as:

TDCs1 = ts1 + ty(y) + ts1walk(PM) + ts1offset(PM)− ttrigger

TDCs3 = ts3 + tpos(l) + ts3walk(PM) + ts3offset(PM)− ttrigger (5.2)

11Note that here the range of the ADC values is much broader than in the case of the S1
counter, compare Figure 5.5b, and also that for the S3 detectors other leading edge discriminator
modules are used [17].
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where l denotes the distance between the hit position and the photomultiplier in
the S3 detector and y stands for the distance between the cross point in the S1
counter and the scintillator edge closer to the photomultiplier.

In both of the equations 5.2 ttrigger is identical and thus is unimportant in the
calculation of the tof value. The only unknown quantities, are the time offsets
toffset, which for the S3 detector, for example, can be extracted by comparing
the tof values with the time-of-flight calculated from the reconstructed particle
momentum. Of course, at least the approximate toffset values of the S1 detector
have to be known. Iteratively, using the obtained time offsets for the S3 detector
one can calculate the S1 offsets. After repeating this procedure a few times offset
values for both detectors are obtained. Figure 5.8a shows the time offsets for some
photomultipliers of the S3 counter after the third series of improvements.

With the parameters for the time walk, the light pulse velocity in the scintil-
lators, and all time offsets, one can calculate the tof = ts3 − ts1 applying equa-
tions 5.2. However, in the analysis ts1 was taken as a weighted average of times
obtained from upper and lower photomultipliers of the S1 module, and ts3 as a
weighted mean of times from an appropriate photomultipliers cluster of the S3
detector.

For events with more than one registered particle the segments of the S1 de-
tector were assigned to the corresponding cluster in the S3 counter, using the
particle trajectory obtained from the drift chamber.

The same way as described for the S1 detector, the time-of-flight was also
calculated using the start time from signals of the S2 or S7 detectors.

For events with more than one registered particle, only those detectors (S1, S2, S7)
were taken into account in which each particle was registerd in a different segment.
If both particles crossed only one segment in each detector than the averaged value
was taken.

The overall obtained time-off-flight resolution amounts to 330 ps (rms) for
events with two or more particles.

5.3 Silicon detector

The silicon pad detector together with the S4 scintillation counter is used for
the detection of the recoil protons from the proton-proton elastic scattering. The
silicon detector [111, 17] consists of 144 pads with dimensions of 22.0 x 4.5 x 0.28mm3

arranged as depicted in Figure 5.9. Each pad is read out separately. The detector
granularity allows the determination of the scattering angle for the recoil protons
with an accuracy of ±0.5◦.

In Figure 5.10a the ADC spectrum integrated over all pads is shown. Already
in the histogram of the raw data clear signals from the minimum ionizing pions
and elastically scattered protons are visibly separated from the noise signals. In
the analysis only pads having ADC signal larger than seven were considered.
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However, as can be seen in Figure 5.10c, this requirement did not caused losses of
the data.

Using events identified as a proton-proton elastic scattering reaction the rel-
ative amplification of single pads was checked. Figure 5.10b shows the measured
energy loss divided by the energy loss expected from the dE/dx signal of the pro-
ton at a given scattering angle. The amplifications from all channels were found
to be the same within a few per cent.
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Figure 5.9: (a) Top view of the silicon pad detector (compare Figure 4.1). Each
element contains four separate pads with dimensions 22. x 4.5 x 0.28 mm3. The overlap
between the detection elements allows to avoid insensitive areas. (b) Silicon pad
detector as seen from the target point (above). Side view (below).
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Figure 5.10: (a) Charge (ADC) spectrum from the silicon detector, integrated over
all pads. (b) Energy loss measured by means of the silicon pad detector, for the
elastically scattered protons, as a function of the pad number. Only ten pads from the
middle row of the detector are shown. (c) The normalized energy loss integrated
over all pads for the elastically scattered protons. In the analysis it was required that
the energy loss must be larger than 0.3 in the units from the picture which corresponds
to the ADC value of 7. One observes that this demand has negligible influence on the
efficiency.



6. Data evaluation

6.1 Data acquisition

For each signal from the scintillation detectors both the charge and the time
relative to the trigger pulse as well as the time signals from the drift chambers were
converted from analog to digital form by FASTBUS modules [100]. The signals
from the silicon detector were digitalized by means of CAMAC units. The general
control of the data stream was carried out by an event-builder processor [112],
which collects the data from FUSTBUS and CAMAC controllers and sends them
to the EXABYTE [113] device which writes them on the 8 mm magnetic tape.
Part of the data stream was sent, parallel, to the ALPHA station, from where the
experiment was controlled and the on-line analysis was possible.

A detailed description of all issues connected with the data acquisition system
can be found in references [114, 115, 17, 116].

The dead time of the data acquisition system, corresponding to the registration
of one event, amounted on the average to 1 ms [114]. This caused, with the typical
trigger rate of hundred events per second, that about five per cent of events
were not accepted. However, since the studied pp→ ppη′ reaction was measured
simulteneously with the proton-proton elastic scattering used for the luminosity
determination, it was not necessary to monitor precisely the dead time.

6.2 Trigger logic - hardware event selection

The pp→ ppη′ reaction is identified through the measurement of the four-
momentum vector of the outgoing protons. The very first requirement was, that
at least two charge particles were detected which was done using the signals from
the scintillation detectors only. The scheme of the trigger logic used for this
purpose is shown in Figure 6.1. A distinction between proton and pion was left
for the off-line analysis.

For simplicity we only consider the S1 and the S3 detectors. One can differ-
entiate two cases which are taken into account: i) both particles impinge the S3
detector and cross different segments in the S1 detector and ii) both particles
impinge the S3 detector but are registered in the same segment of the S1 counter.
In the first case the multiplicity of the S1 segments is larger than one, and the
number of the photomultipliers giving signals in the S3 detector should be larger
than two. This is realized by the trigger Ts1,µ>1 ∧ Ts3,µ>2 (see Figure 6.1). In
the second case, realized by the trigger Ts1,high ∧ Ts3,µ>2, when two protons cross
the same segment of the S1, on the average two times larger energy deposition

37
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is expected in this segment and therefore only events with the appropriate high
amplitude will be accepted.
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Figure 6.1: Simplified scheme of the trigger electronics for the detection of two outgoing
charge particles. The S2 detector, not shown here, is connected identically as the S1
counter. In the case of the S1 detector the multiplicity unit defines the number of
segments which have a signal, and in the case of the S3 detector the number of active
photomultipliers is determined. For more details of the trigger electronics see [114, 117].

Special fast-pulse-integrator [118] units, which add the signals from the lower
and upper photomultipliers, deliver analog pulses to the discriminators with am-
plitudes proportional to the energy loss 1. Using appropriate discriminator levels,
only such signals which corresponds to the energy loss larger than the demanded
minimum were accepted.

Since the energy deposition depends on the particle velocity, this threshold
value had to be adjusted for signal amplitudes of protons from the pp→ ppη′

reaction, which have the velocity of about 0.75 c. Figure 6.2a shows the spectrum
of the energy loss in the S1 counter in the case when only one particle is registered.
The shaded histogram shows the energy loss distribution corresponding to protons
with velocities ranging from 0.7 c to 0.8 c. Setting the hardware threshold to ninety
most of the events with one particle crossing the segment are rejected, but still
most of the events, where two protons with velocity 0.75 c cross the same segment
simultaneously are registered. Figure 6.2b shows an energy loss spectrum from
the raw data taken with the trigger Tη′ used in the experiment. Two peaks at
the same positions as in Figure 6.2a are due to the trigger with multiplicity larger
than one, and the sharp edge at 90 (energy loss in a.u.) comes from the “high
amplitude” threshold.

1The hardware summation of signals required an adjustment of the same amplifications for
the lower and upper photomultiplier.



Chapter 6: Data evaluation 39

0

500

1000

1500

2000

2500

3000

0 50 100 150 200
energy loss [ a.u. ] a)

 c
ou

nt
s

0

500

1000

1500

2000

2500

3000

0 50 100 150 200
energy loss [ a.u. ]

co
un

ts

b)

Figure 6.2: (a) Energy loss distribution in a segment of the S1 detector measured with
a test trigger ( Ts1,µ=1 ∧ Ts3,µ>2 ). Values on the horizontal-axis correspond to the sum
of the ADC values from upper and lower photomultiplier. Two peaks originate from
pions and protons. The shaded histogram corresponds to protons with the velocity in
the range between 0.7 c and 0.8 c. Producing this spectrum exactly one track in the
drift chambers was required. (b) Energy loss distribution in a segment of the S1
detector obtained with the Tη′ trigger. If the trigger is released by the S2 detector or
two particles cross separate segments in the S1 then, in each segment separately, the
same structure as in a) is observed. However, if only one segment has a signal, then it
is required (by the electronics - compare Figure 6.1) that the sum of the pulse charges
from the upper and the lower readout must be larger than the threshold value, which
is in this case equal to ninety.

The S2 detector, having segments about seven times narrower than S1, was
additionally used in the trigger in the same way as the S1 detector. Thus sum-
marizing, the main trigger for the detection of the pp→ ppη′ reads:

Tη′ = (Ts1,µ>1 ∨ Ts1,high ∨ Ts2,µ>1 ∨ Ts2,high) ∧ Ts3,µ>2 (6.1)

In order to verify the influence of the threshold settings on the trigger efficiency two
histograms, shown in Figure 6.3, were built. Figure 6.3a showing the energy loss
distribution for two protons with velocities of 0.75 c, indicates that the adjusted
threshold, equal to ninety, was low enough to neglect the number of rejected
events. Similarly, one can conclude from Figure 6.3b that the number of events
with the multiplicity lower than three in the S3 detector is to be neglected.

Another branch of electronics was prepared for the selection of events with
elastically scattered protons. The corresponding trigger Tpp required the coinci-
dence between signals from the S4 and the S1 scintillation detectors. However,
because of the high rate only every eighth Tpp trigger signal was accepted.

The efficiency of the Tpp trigger depends directly on the efficiency of the S1
detector, which was found to be larger than 99.99% [106] and on the S4 detector.
In order to verify the efficiency of the S4 detector, which was working in the fringe



40 Experiment

magnetic field of the dipole, additionaly every 256’th event triggered by the S1
detector alone was registered. The efficiency of the S4 counter was found to be
99.9%
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Figure 6.3: (a) Energy loss distribution measured in a segment of the S1 detector
obtained for events with two protons having velocities in the range between 0.7 c and
0.8 c, both crossing through the same segment. Units on the horizontal-axis are the
same as in Figures 6.2a and 6.2b. (b) Number of photomultipliers (multiplicity)
giving signals in the S3 detector, for two protons with velocities in the range between
0.7 c and 0.8 c crossing the scintillation wall. The line shows the Gaussian distribution
fitted to the data. The shaded tail corresponds to events when at least one proton made
a nuclear reaction in the scintillator.

The information which trigger opened the data acquisition was written on
tape. This was necessary for the calculation of the absulute number of events
with elastically scattered protons since such event could also release the Tη′ trigger
which, opposite to the Tpp trigger, was not prescaled.

6.3 Off-line analysis - software event selection

In the following the evaluation of the data from the Tη′ trigger is presented.
The selection of events from the elastically scattered protons will be discussed in
chapter 7.

The Tη′ trigger was adjusted in such a way that all events with two or more
charge particles were registered 2. However, if only one particle cross the detectors
it could also release the Tη′ trigger, provided that the energy deposited in the S1 or
S2 segment was larger than the “high amplitude” threshold. Thus, in the first step
of the off-line data analysis, events with two or more tracks in the drift chamber
were preselected.

A particle trajectory in the drift chambers was reconstructed by fitting a
straight line to the measured cross points in all planes. In case of many tracks, the

2Of course this concerns only the geometrical region in which protons from the pp→ ppη′

reaction were expected.
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correlation between hit-point and track must be decided. In short, one can say
that all possibilities were checked and the one with the smallest chi-square was
accepted 3. Since for the track reconstruction it was required that each fitted track
has at least twelve hits, the fast preselection was performed by rejecting all events
which have less than 24 hits in drift chambers. This criterion allowed to reject
about 85% of the data, see Figure 6.4a. However, performing the reconstruction
with this condition about 6% of the events with two tracks were lost. This and
other aspects of the reconstruction efficiency are discussed in chapter 9.5.
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Figure 6.4: (a) Number of signals from drift chambers per event. A sample of data
from a six hours measurement is shown. The D1 and D2 drift chambers have together
fourteen planes. Thus, peaks with maxima at 14 and 28 number of signals per event
correspond to one and two particles crossing the chambers, respectively. The enhance-
ment at 42 corresponds to three particles. A small peak at 6 originates from one particle
which passed through the insensitive area in the planes with inclined wires (compare
Figure 5.1). Similarly, an enhancment at 20 corresponds to two particles from which
one passed through this area. The peak in zero appears because the trigger detector
S1 is larger then the drift chamber active area. (b) Squared masses of two particles
measured in coincidence. The pronounced peak close to the centre of the figure corre-
sponds to two registered protons. Peaks are recognized also when proton and pion or
two pions were detected.

Knowing the trajectory of each particle in the drift chambers it was possible
to compute the particle momentum and its velocity. The particle velocity was
calculated from the time of flight measured between the scintillation hodoscopes
S1, S2, S7 and the scintillation wall S3. The particle momentum were computed
by the “back tracking” in the magnetic field to the target point. It was performed
as follows: taking the approximate momentum, the particle trajectory in the three
dimensional dipole magnetic field [119, 120] was reconstructed and the distance

3for more details about the track reconstruction see [102] or contact Mariusz Soko lowski
msokolo@if.uj.edu.pl
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between this trajectory and the target was calculated. Next the momentum was
varied as long as the trajectory crossed the target. However, in the computations
only horizontal coordinates of the target point were fixed, and thus the distribution
of the vertical component of the reaction point could be obtained from the data.
For the first iteration, the aproximate value of the momentum was calculated
assuming that the dipole field is constant and has only a vertical component [121].

Figure 6.4b shows the squared mass of two simultaneosly detected particles.
The masses were calculated from the momentum and the velocity established for
each trajectory. A clear separation into groups of events with two protons, proton
and pion or two pions is seen. The dashed line indicates a software cut for the
selection of events with two registered protons, which were accepted for the further
analysis.

Events with three reconstructed tracks were also analyzed, since the charged
pion from the η′ decay may also give signals in the drift chambers. In such cases,
two out of three registered particles must have been identified as a proton.

6.4 pp→ ppη′ reaction identification

After the selection of events with two outgoing protons the possible η′ meson
was not identified directly but its four-momentum vector was determined via
the missing mass techniques 4. The knowledge of the momenta of both protons
before and after the reaction, and the energy and momentum conservation, allow
to calculate a mass of a not observed particle or system of particles in the exit
channel. Namely:

m2
x = E2

x− ~P 2
x = (Ebeam +Etarget−Eproton

1 −Eproton
2 )2− (~Pbeam− ~P proton

1 − ~P proton
2 )2

(6.2)
Figure 6.5a shows a histogram of the missing mass obtained from the measurement
below the η′ production threshold (solid line). This spectrum does not contain
any statistically significant structure and especially there is no enhancement in
the region corresponding to the η′ meson mass. In order to reduce the statistical
fluctuations the histogram was smoothed out as indicated by the dashed line. The
smoothed representation of these data is used in the following as a background to
the pp→ ppη′ reaction.

The shape of the background can well be reproduced by Monte Carlo simu-
lations taking a multi-pion production into account. Figure 6.5b compares the
experimental yield of the pp→ ppX reaction measured below the η′ threshold to
the missing mass spectrum obtained from a simulation of the pp → ppπ+π− and
pp→ ppπ0π+π− reactions (dashed line).

4The missing mass techniques is described in [122], and was first applied by [123].
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Figure 6.5: Missing mass of the unobserved particle or system of particles in the
pp→ ppX reaction.

(a) Missing mass spectrum measured at a nominal beam momentum of 3201 MeV/c

which is about 7 MeV/c below the pp→ ppη′ reaction threshold (solid line). The spec-
trum is shifted towards higher masses to the kinematical limit of the beam momentum
of 3222 MeV/c. Smoothed fit function to the data (dashed line). (b) The solid
line is the same as in a). The dashed line represents the missing mass distribution
obtained from a Monte Carlo simulation of the pp → ppπ+π− and pp → ppπ0π+π−

reactions. (c) Data at a nominal beam momentum of 3222 MeV/c (∼ 14 MeV/c

above the pp→ ppη′ reaction threshold) - solid line. Scaled background from a) - dashed
line. (d) Difference between solid and dashed line of c), the arrow indicates the η′

meson mass.
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Since the angular distributions for the two or three pion production is not
known the simulations were performed considering the phase space factors only.
The result of this Monte Carlo simulation is not used in the analysis, it is presented
here only to show that the form of the background is well understood.

It is worth noting that not only the shape but also the absolute number of
background events (amounting to ∼ 2050) agrees fairly well with the yield calcu-
lated from the total cross section for the two and three pion production which is
found to be ∼ 2800 5.

At the present value of the beam momentum up to seven pions could be pro-
duced in the proton-proton scattering, however, due to the decreasing cross section
with increasing number of pions these reactions do not contribute significantly 6.

Figure 6.5c shows the missing mass spectrum from the measurement at the
nominal beam momentum of 3222 MeV/c together with the smoothed represen-
tation of the data taken below threshold. Subtracting both reaction yields from
each other (above threshold minus below threshold), after normalization to the
integrated luminosity, one obtains a clear peak in the region corresponding to the
η′ meson mass, as seen in Figure 6.5d. The small seemingly structure at missing
mass values below the η′ mass is not significant from statistical point of view and
it does not reproduce itself for measurements at the other beam momenta.

For the subtraction the spectrum from below threshold was shifted in such
a way that the kinematical limits for both histograms are the same. Since the
background is mainly due to two or three pion production the form of its missing
mass distribution remains the same for the measurements at the beam momenta
of 3201 MeV/c and 3222 MeV/c. This is because, this momentum variation
corresponds to only about one per cent change of the momentum above threshold
for the pp → ppπ+π− or pp → ppπ0π+π− reactions. For example, the threshold
beam momentum for the pp→ ppπ+π− reaction amounts to 1219 MeV/c.

Integration of the entries in the peak from Figure 6.5d gives the number of
registered events for the production of the η′ meson in the pp→ ppη′ reaction,
which was denoted as “N” in the equation 4.1, and which in this case amounts to
N = 164.3± 23.4.

Table 6.1 presents the number of pp→ ppη′ events obtained for various beam
momenta. A first column indicates the used beam optics, where the name COSY-
11 stands for the standard beam tuning used in the COSY-11 experiments [17,
99], and ramping denotes the beam optics used in the measurements with the

5The total cross section at a beam momentum of 3200 MeV/c for the pp→ pp2π is equal to
σ ≈ 3.4 mb and for pp→ pp3π σ ≈ 0.6 mb [124]. The detection efficiency amounts to 0.7 · 10−5

and 3.7 · 10−5 for two and three pion production, correspondingly. The integrated luminosity
was equal to 60.9 nb−1(see table 7.1 in chapter 7). Hence, the expected number of registered
events amounts to ∼ 2800.

6The cross section goes down with the number of produced particles, additionally the available
phase space decreases drastically nearly as (Q/

√
s)(3n−5)/2 [6, 122], where Q and s denote the

excess energy and the total energy in the centre-of-mass system, respectively, and n stands for
the number of particles in the exit channel.



Chapter 6: Data evaluation 45

continuous beam momentum change.
For measurements with the continuous beam momentum increase each event

was analyzed with an appropriate beam momentum and only the missing mass
spectrum was grouped into bins corresponding to the beam momentum range of
4 MeV/c.

beam nominal beam nominal number of
optics momentum excess registered

Pbeam energy Q pp→ ppη′

[MeV/c] [MeV] events

COSY-11 3222 4.4 164.3± 23.4
COSY-11 3214 1.8 70.7± 14.4
ramping 3220→ 3224 ; 3222 4.4 43.6± 11.0
ramping 3216→ 3220 ; 3218 3.1 20.5± 8.0
ramping 3212→ 3216 ; 3214 1.8 3.0± 5.5
ramping 3208→ 3212 ; 3210 0.5 −1.5± 5.0

Table 6.1: Number of identified pp→ ppη′ reactions

A seemingly inconsistency of the number of registered pp→ ppη′ events at an
excess energy of Q = 1.8 MeV for different beam optics will be explained later
in chapter 8, where the true beam momentum shall be established on the basis of
the experimental data. But first, in the next chapter, the method of calculating
the luminosity “L” shall be presented.
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7. Luminosity determination

Analogously to equation 4.1 the centre-of-mass differential cross section dσ∗
dΩ∗

for the proton-proton elastic scattering can be expressed as 1:

dσ∗

dΩ∗ (Θ∗
2) · L =

∆N(Θ∗
2)

∆Ω∗(Θ∗
2)

(7.1)

where, ∆N(Θ∗
2) indicates a number of elastically scattered protons at a solid angle

of ∆Ω∗ specified around the centre-of-mass angle Θ∗
2. The angle Θ∗

2 corresponds
to the laboratory angle Θ2 which is shown in Figure 7.1. Applying equation 7.1
one can establish the luminosity L integrated over the measurement time, since
dσ∗
dΩ∗ is known from literature [125] and ∆N

∆Ω∗ is determined from the experimental
data.
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Figure 7.1: Schematic view of the COSY-11 detection setup. Only detectors used for
the measurement of the elastically scattered protons are shown. Compare Figure 4.1 on
page 24 and also Figure 5.9 on page 36. Numbers, at the silicon detector (Si) and below
the S1 counter, indicate the order of pads in the silicon detector (Si) and of segments
in the S1 counter, respectively. The XS1 axis is defined such that the first segment of
the S1 ends at 80 cm and the sixteen segment ends at −80 cm.

Figure 7.1 shows the used detection setup together with an example of the
trajectory for an elastically scattered proton event. For the forward scattered

1In the equation 7.1 it is implicitly assumed that the differential cross section dσ∗

dΩ∗ changes
linearly within the solid angle ∆Ω∗, which is true if the ∆Ω∗ is spread over a small range of
angles Θ∗

2.
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proton, which is bent in the magnetic field of the dipole and registered in the drift
chambers, one can determine a momentum vector at the target point. According
to two body kinematics [122, 126] the parallel and perpendicular to the beam
momentum components of this momentum vector should form an ellipse. Fig-
ure 7.2a shows the appropriate part of the kinematical ellipse together with the
experimental data gathered with the trigger Tpp, which demanded simultaneous
signals in the S1 and the S4 scintillators. Already, a sample of the raw data gives
a clear peak at the expected kinematical line. The boundary of the region filled
with the data in Figure 7.2a is determined by the detection acceptance. If the
value of the transversal momentum component was larger than −0.5 GeV/c, as
indicated by the dashed line, then the event was not taken into account in the
further analysis.
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Figure 7.2: (a) Components of the momentum vector of particles registered in both
drift chambers and the S1 detector. The momentum component transversal with respect
to the beam direction is shown versus the parallel one. The solid line corresponds to the
expected dependence between both momentum components for the elastically scattered
protons. The dashed line shows the cut performed in the analysis. The shown sample of
data was measured at the nominal beam momentum of Pbeam = 3222 MeV/c with the
trigger Tpp ≡ TS1 ∧ TS4. (b) Pad number of the silicon detector versus the position
in the S1 detector. Only the data below the dashed line from Figure (a) were taken.
Essentially only silicon pads with numbers from 14 to 48 and the S1 segments from 1 to
4 recorded simultaneously elastically scattered protons. Note that the number of entries
per bin is given in the logarithmic scale.

The two body kinematics gives the unique dependence between the recoil an-
gles Θ1 and Θ2 of both scattered protons (tgΘ1 · tgΘ2 = 1

γ2
cm

). Therefore, one
expects for events with elastically scattered protons a correlation between the po-
sition in the Si and the S1 detectors. Figure 7.2b shows the position measured
along the silicon pad detector as a function of the position determined in the S1
scintillator. The observed correlation is close to a straight line.
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For the range between 40 cm and 80 cm along the XS1 axis, defined in Fig-
ure 7.1, the scattering angle Θ∗

2 varies between 64◦ and 42◦. This part of the S1
scintillator was divided into eleven strips each corresponding to the region of the
scattering angle ∆Θ∗

2 equal to 2◦. Figure 7.3a shows the projection of the data
from Figure 7.2b along the expected correlation line for the range of the scattering
angle Θ∗

2 = 45◦±1◦ corresponding to the XS1 range of 73cm ≤ XS1 ≤ 76cm. The
peak, seen on a rather constant background corresponds to events from elasti-
cally scattered protons. The background is due to pp→ pnπ+ or other reactions
with pion production, where the proton is registered in the drift chambers and
the charged pion gives a signal in the silicon detector. The number of entries in
the observed peak in Figure 7.3a gives the number of events ∆N(Θ∗

2 = 45◦) with
protons scattered at the scattering angle ranging between Θ∗

2 = 44◦ and Θ∗
2 = 46◦.
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Figure 7.3: (a) Projection of the data from Figure 7.2b along the expected correlation
line. The dashed line indicates the estimation of a background. (b) Differential cross
section for the elastic proton-proton scattering measured at the beam momentum of
Pbeam = 3222 MeV/c. Cross sections measured by the EDDA collaboration are shown
by open squares [125]. Full circles indicate the result of the present work. The points
from this work are fitted in the overall normalization to the cross section measured by
EDDA. To be better distinguishable both the EDDA data and the points from this work
were shifted in the horizontal direction from each other by a half size of the point.

The solid angle ∆Ω∗ corresponding to a given region (strip) in the S1 detector
was calculated by means of the Monte Carlo simulation. For this, N0 events of the
elastic proton-proton scattering were simulated taking realistic target and beam
parameters, as it is described in chapter 9. Next the simulated events were ana-
lyzed in exactly the same way as the real data, and the number of protons Naccepted

registered in a given S1 region was established. Further the solid angle for this
region was calculated as follows:

∆Ω∗ =
4π ·Naccepted

2 ·N0
[sr], (7.2)
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where, 4π stands for the full solid angle and factor 2 in the denominator is used
because both recoil protons are undistinguishable 2.

Figure 7.3 indicates the angular distribution of the differential cross section for
the elastic proton-proton scattering obtained in this experiment (full circles) at
a beam momentum of Pbeam = 3222 MeV/c. The amplitude of this distribution
was fitted to the data of the EDDA experiment [125] with the only free parameter
being the integrated luminosity. The extracted integrated luminosity amounts to
L = (61.6±1.4)·1033 cm−2 = (61.6±1.4) nb−1, which gives the average luminosity
of l = 8 · 1029 cm−2s−1.

Table 7.1 summarizes the obtained luminosities for all measurement periods.
The variations of the averaged luminosity for the measurements with the COSY-11
optics are due to the fluctuations of the target density, whereas for the measure-
ments with the ramping optics they are caused by the losses of the proton beam
during the acceleration cycle.

beam nominal beam integrated measurement average
optics momentum luminosity duration luminosity

Pbeam [nb−1] ≡ [hours] [1029 cm−2s−1]
[MeV/c] [1033 cm−2]

COSY-11 3201 60.9 ± 1.4 22.5 7.5
COSY-11 3214 126.2 ± 3.0 58.0 6.0
COSY-11 3222 61.6 ± 1.4 21.5 8.0
ramping 3222 24.7 ± 0.6 25.0 2.7
ramping 3218 34.3 ± 0.8 25.0 3.8
ramping 3214 36.4 ± 0.9 25.0 4.0
ramping 3210 37.1 ± 0.9 25.0 4.1

Table 7.1: Luminosities and duration of the measurement periods.

The signal to background ratio shown in Figure 7.3a is larger than 100 to 1.
Therefore, assuming the background to be estimated with the precision of 20%
the systematical error of the background subtraction is about 0.2%. This is negli-
gible with the estimated systematical error of the solid angle (∆Ω∗) determination
which amounts to ∼ 2% and the absolute normalization of the EDDA differential
cross sections ∼ 1% [125]. The overall systematical error of the luminosity deter-
mination is equal to 3%, whereas the statistical error is ∼ 2.4% as can be deduced
from table 7.1.

2For instance, if a used detector would be half a sphere, it means it would cover 2π sr, then
out of N0 generated events N0 protons would be registered. Hence, equation 7.2 gives, indeed,
a proper result.



8. Absolut beam momentum
determination

Near the kinematical threshold the total cross section for the pp→ ppη′ reac-
tion grows rapidly with increasing beam momentum. Therefore, in view of the
theoretical description, the determination of the absolute beam momentum is as
important as the accuracy of the cross section values. The aim of this chapter is
to establish the real absolute beam momenta for all measurements and to evaluate
the error in the beam momentum determination caused by the applied method.
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Figure 8.1: (a) Missing mass spectrum measured with the COSY-11 beam optics at
a constant nominal beam momentum of 3222 MeV/c. The shaded area corresponds to
events assigned to the η′ meson production. The fit of the Gaussian distribution to the
data is shown as the solid line. The arrow indicates the η′ meson mass.
(b) As in a) but for a constant nominal beam momentum of 3214 MeV/c.
(c) Missing mass spectrum measured with the continuous beam momentum change. The
data taken at the nominal momentum range between 3220 MeV/c and 3224 MeV/c are
shown. Each event was evaluated with the appropriate beam momentum depending
on the time past from the beginning of the acceleration cycle. Note that the obtained
missing mass peak corresponding to the events for the production of the η′ meson is
shifted towards larger masses by ∼ 1.5 MeV with respect to the η′ meson mass.

The absolute beam momentum was calculated from the position of the η′ peak
in the missing mass spectrum. Figures 8.1a,b,c show the missing mass spectra eval-
uated for three different measurement periods. The first two 8.1a,b correspond
to the measurements with the standard COSY-11 beam optics and the third one
to the measurement with the continuous beam momentum increase ( ramping
optics ). A fit of the Gaussian distribution to the missing mass spectra obtained
with the COSY-11 optics gives the mean of the peak, which is about 0.3 MeV/c2

larger than the mass of the η′ meson. This implies that the real beam momen-
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tum was about 0.9 MeV/c smaller than the nominal one. This result is consis-
tent with the momentum offset of 0.7 MeV/c obtained, by a completely different
method [127, 128], from a study of the pp→ pK+Λ reaction performed with the
same beam optics at the COSY beam momentum of 2350 MeV/c [128].

Figure 8.1c indicates that in case of the ramped beam the obtained missing
mass exceeds by about 1.5 MeV/c2 the η′ meson mass, which results in a real
beam momentum to be smaller by ∼ 4.5 MeV/c with respect to the nominal one.
Such large offset could still be explained by the inaccuracy of the beam orbit lenght
estimation, which is used for the nominal beam momentum calculations [129].
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Figure 8.2: (a) Schematic view of the relative settings for the target, the dipole magnet
and the drift chamber stack at the COSY - 11 detection system. (b) Offset of
the absolute beam momentum transfers linearly to the the missing mass, namely as:
3 ·∆P [MeV/c] ≃ ∆mm [MeV ]. (c) Missing mass of the η′ meson as a function of
the error of establishing the drift chamber angle. This angle is known with an accuracy
better than ±0.1◦ where the missing mass changes by less than ∼ 0.15 MeV . The
results of b) and c) were obtained by means of the Monte Carlo method.

The used method assumes that the deviation of the experimental missing mass
from the real meson mass is due to the offset between the real beam momentum
and the one used in the analysis as shown in Figure 8.2b. Consequently the preci-
sion of calculating this offset is influenced by the inaccuracy of the four-momentum
vectors of both protons, since they are also used in the missing mass computa-
tions. Thus the accuracy of the absolute beam momentum determination from
a missing mass spectrum is defined by the accuracy of the measured proton mo-
menta, which are derived from the numerical reconstruction of the track between
the target and the drift chambers (see Figure 8.2a) through the magnetic field in
the dipole.

The crucial parameters for the proton momentum determination and hence
for the meson mass calculations are the target position, the magnetic field in the
dipole and the settings of the drift chambers. Figures 8.2c and 8.3a,b,c depict how
the error of these parameters influences the determination of the missing mass.

This study was performed by simulating a sample of events with the Monte
Carlo method and then analyzing them in the same way as the experimental data.
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The simulated “data” were analyzed varying the target position, drift chambers
angle, and the dipole magnetic field with respect to the one used in the simu-
lations 1. The dashed lines in Figures 8.2c and 8.3a,b,c indicate the maximum
expected deviation in the determination of the considered parameters. The sys-
tematical error of the target position and the angle of the drift chambers is smaller
than 2 mm and 0.1◦, respectively. Specifically the 0.1◦ was deduced assuming that
the inaccuracy of the drift chamber stack position amounts to ∼ 3 mm. This
very conservative assumption was checked by performing the track reconstruction
for the experimental data in each drift chamber separately. It was found, that
the difference of the relative angle between the drift chambers extracted from the
experimental data and the angle calculated from the measured chamber geometry
was smaller than 0.1◦.
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Figure 8.3: (a) The reconstructed missing mass versus the deviation of the target
position in the horizontal direction perpendicular to the beam axis. The position of the
target is known with an accuracy better than ± 2 mm which corresponds to the missing
mass variation smaller than ∼ 0.1 MeV . (b) Missing mass versus the deviation of
the target position along the beam direction. Since the position of the target is known
to be better than ± 2 mm the missing mass variation caused by this parameter is less
than ∼ 0.04 MeV . (c) Missing mass versus changes of the dipole current. The
absolute current value used in the mesurement of the pp→ ppη′ reaction was ∼ 3700 A
which corresponds to the vertical magnetic field component of ∼ 1.53 T. The magnetic
field is known with the accuracy better than 0.25 % which is equivalent to a missing
mass variation of less than ∼ 0.06 MeV .

The three space components of the magnetic field were measured for a few
different dipole currents by means of a Hall probe with an accuracy of 0.1% [121,
119]. However, because of the interpolation error the overall accuracy amounts
to ∼ 0.25% [120]. Hence, for the dipole currents used in this experiment, which
ranged between 3687 A and 3724 A depending on the beam momentum, the

1In the simulation the target dimensions, the beam spread in space and momentum, as
well as the drift chamber resolution were taken into account. All mentioned parameters were
established from the experimental data. The target is a cylindrical hydrogen beam with a
diameter of 9 mm. The proton beam has the Gaussian distribution in horizontal and vertical
direction with σ ∼ 4 mm and the beam momentum spread of 1.2 MeV/c (see chapter 9).
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expected systematical error of the dipole current should be smaller than 10 A as
shown by the vertical lines in Figure 8.3c.

Thus, i) a misalignment of the angles of the drift chambers relative to the cho-
sen coordinate system ( Figure 8.2c ), ii) an uncertainty in the definition of the
target position in both vertical and longitudinal directions ( Figures 8.3a,b ),
and iii) the inaccuracy of the knowledge of the dipole magnetic field ( Fig-
ure 8.3c ) altogether result in an error of the reconstructed missing mass of less
than ∼ 0.35 MeV . This gives the systematical error in the absolute beam mo-
mentum determination of 1.1 MeV/c, which is two times smaller than the error of
the estimations based on the beam orbit lenght and the revolution frequency [125].

Table 8.1 compares the nominal beam momenta with the real ones evaluated
from the position of the η′ peak in the missing mass spectrum.

beam Pbeam beam momentum ∆Pbeam Pbeam real excess
optics nominal correction ∆Pbeam averaged real energy Q

[MeV/c] [MeV/c] [MeV/c] [MeV/c] [MeV]

COSY-11 3222 0.8
0.9

3221.1± 1.1 4.1± 0.4

COSY-11 3214 1.0 3213.1± 1.1 1.5± 0.4
ramping 3222 4.8

4.5
3217.5± 1.1 2.9± 0.4

ramping 3218 4.2 3213.5± 1.1 1.7± 0.4
ramping 3214 — — 3209.5± 1.1 0.3± 0.4
ramping 3210 — — 3205.5± 1.1 −0.9± 0.4

Table 8.1: Absolute beam momenta

The obtained results show that the difference between the true and the nomi-
nal beam momentum depends on the tuning of the accelerator. Particularly, the
nominal beam momentum calculated using the parameters of the COSY accelera-
tor is greater than the true value obtained from the experimental data. It is worth
noting that the similar conclusions were drawn for the SATURNE accelerator [20].

The mesurements with the ramping optics at the 4 MeV/c momentum bins
with the averaged beam momenta as quoted in the two last lines in table 8.1
will not be taken into account in the further analysis. This is because the true
excess energies found for these measurements are smaller or equal to zero within
the estimated errors. This fact explains also why the number of pp→ ppη′ events
derived for this measurements is consistent with zero as it is shown in table 6.1
on page 45.



9. Detection efficiency

9.1 Efficiency definition

In this chapter the procedure of the detection efficiency calculations will be
presented. The efficiency Eeff can be defined as the ratio of the number of detected
pp→ ppη′ reactions to the total number of pp→ ppη′ events which occurred in
the target.

In order to establish this ratio a sample of Ngenerated pp→ ppη′ events was
simulated and subsequently, the response of all detectors was evaluated by means
of a GEANT [130] program, for each event separately. The generated detector
signals were written on disk and analyzed in the same way as the experimental
data. The analysis of the simulated events results in the number Naccepted of iden-
tified pp→ ppη′ reactions. Hence, the ratio Naccepted/Ngenerated gives the detection
efficiency Eeff , which in general should be dependent on the angular distribution
of the reaction products, what is neglected here since only S-waves contribute to
the threshold production.

In the calculations of the Eeff value the real target dimensions, as well as
the beam spread in momentum and space must be taken into account. Therefore
evaluation of the values of Eeff is preceded by the estimation of the beam and
the target parameters.

9.2 Beam momentum spread

The beam momentum spread ∆p
p

was measured on the basis of the following

equation [131]:
∆f

f
=

1

γ2
tr

∆B

B
+

(
1

γ2
− 1

γ2
tr

)
∆p

p
(9.1)

where ∆f is the change of the beam revolution frequency f corresponding to
the variation ∆B of the dipole magnetic field B. The Lorentz factor γ is equal
to γ =

√
p2 +m2/m, where m is the proton mass. The value of the quantity

γtr = 2.18 was established before the experiment. This was performed by the
measurement of the beam revolution frequency changes ∆f caused by the variation
of the dipole magnetic field B, where the dipole magnetic field was changed so
much that the term

(
1
γ2 − 1

γ2
tr

)
∆p
p

in equation 9.1 could be neglected in comparison

to ∆B
B

1.

1By changing the magnetic field the accelerating RF-cavity was switched off. Therefore one
expects that the ∆p was equal to zero.
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On the other hand, during the experiment the variation of the magnetic field B
can be neglected and the value of the ∆p

p
can be obtained by measuring the value

of ∆f
f

applying the approximate equation:

∆f

f
= (

1

γ2
− 1

γ2
tr

)
∆p

p
. (9.2)

In this experiment the value of the standard deviation ∆f was controlled
every few hours, and it was found to vary between 65 Hz and 80 Hz. The mean
revolution frequency for the beam momentum of 3222 MeV/c is equal to f =
1.56876 MHz. Hence, according to equation 9.2, the standard deviation of the
beam momentum spread varied between ∆p = 1.0 MeV/c and ∆p = 1.2 MeV/c.
Thus, on the average ∆p = 1.1 MeV/c± 0.1 MeV/c. This implies that the
relative momentum spread is equal to ∆p

p
= 1.1

3222
= 3.4 · 10−4.

9.3 Target and beam dimensions

The cluster target beam diagnostic was performed by the elastic electron scat-
tering with a 5 keV electron beam [16, 98]. It was established, that the cluster
beam is homogenous with a diameter of 9 mm.

For the simulation it is important to know the overlap between the COSY
proton beam and the cluster target beam. Therefore the knowledge of the beam
parameters is also necessary. The density of the circulating proton beam at the
target place can approximately be described by the Gaussian distribution in the
horizontal and vertical direction. The standard deviations for both, the horizon-
tal (σx) and vertical (σy) distribution are given by the beam optics parameters as
follows [99, 17]:

σx =

√√√√ǫ · βx +D2
x ·
(

∆p

p

)2

, σy =
√
ǫ · βy, (9.3)

where ǫ denotes the beam emittance 2, βx = 10.0 m/rad and βy = 12.0 m/rad
called beta-functions are defined by the quadrupole focusing strength varying
along the accelerator ring, and Dx = 0.2 m denotes the dispersion at the target
point. Taking ∆p

p
= 3.4·10−4 and applying the above values in the equation 9.3 one

obtains that: σx = 4.1 mm and σy = 4.5 mm. This estimations were performed
for the COSY-11 beam optics. For the ramping optics one obtains σx ≈ 12.6 mm
and σy ≈ 4.3 mm. The density distribution of the beam-target overlap does not

2The beam emittance [132] at a given beam momentum can be obtained from the Liouville
theorem ǫβγ = const., and the known emittance by the injection which amounted to ǫinj =
20 mm mrad. The beam momentum by injection is Pbeam = 276.9 MeV/c, which implies
γinjβinj = 0.295. Thus, the beam emittance at Pbeam = 3222 MeV/c is ǫ = 1.72 mm mrad,
since γβ = 3.43.
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change significantly if the horizontal beam spread exceeds σx ≈ 4.5 mm since,
the target diameter is equal to 9 mm.

In case of the ramping tuning the large horizontal dimension of the beam
caused, however, that more than half of the beam was circulating outside the
target leading to the decreas of the luminosity in comparison to the measurements
with the COSY-11 beam optics (compare table 7.1 on page 50).

The density of the beam-target overlap and the luminosity depends also on
the position of the middle of the beam relative to the target centre. Therefore the
proton beam was adjusted at the centre of the target by means of small dipole
magnets called steerers [132], which were installed in the COSY ring, a few meters
from the target. During the variation of the steerer magnetic field, which causes
a shift of the beam with respect to the target, the counting rate of the “elastic
trigger” Tpp was monitored. The optimal steerer parameters were adjusted to
the maximum registered counting rate. This procedure, performed before the
experiment, allowed to adjust the beam on the target with the precision better
than 1 mm. The stability of the position of the COSY beam with respect to
the target was controlled during the experiment by means of the beam position
monitors [131].
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Figure 9.1: The distribution of the vertical component of the reaction point obtained
in the experiment for the beam momentum of 3222 MeV/c. The solid line shows the
fitted Gaussian distribution.
(a) The spectrum obtained for the data with the elastically scattered protons. The
sigma of the fitted Gaussian function amounts to 4.2 mm (b) The spectrum of the
data with the pp → ppX reactions. The standard deviation of the fitted function is
equal to 5.9 mm.

In the following the obtained values for the σy = 4.5 mm and ∆p = 1.1 MeV/c
will be confronted with corresponding values obtained from the analysis of the
experimental data.

For the momentum reconstruction of the ejected particles it was assumed that
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their trajectories pass through the nominal target position in the horizontal plane.
Therefore, from the particle track reconstruction it was not possible to determine
the extensions of the target in the horizontal direction. However, this restric-
tion was not necessary in the vertical direction, and it was possible to determine
the vertical beam profile at the target by tracing the particle trajectory. Fig-
ure 9.1a shows the distribution of the reconstructed vertical component of the
reaction point for the elastically scattered protons registered at a beam momen-
tum of 3222 MeV/c, which can be well described by the Gaussian distribution
with the standard deviation of σy = 4.2 mm. “Tails” seen at both sides of the
Gaussian function are due to the secondary scattering on the vacuum chamber
or originate from the reactions at the rest gass spread near the target. The stan-
dard deviation of the vertical beam spread determined from the data with two
registered protons is significantly larger, and amounts to σy = 5.9 mm, as shown
in Figure 9.1b. This difference of the σy determination is due to the differences
of the multiple scattering in the exit window, drift chamber foils and air. The
multiple scattering decreases with the growing energy of the particle traversing
the medium, and protons ejected from the pp→ ppη′ reaction have kinetic energy
about 480 MeV , whereas the kinetic energy of the registered elastically scattered
protons is about 1360 MeV .

Additional factors, which may influence the width of the distributions shown
in Figures 9.1a,b are the horizontal beam spread and the beam momentum spread.
The effect of this parameters on the σy determination is presented in Figures 9.2a,b.
Using the Monte Carlo method samples of pp→ ppη′ and pp → pp events were
generated with the vertical beam spread of σy = 4.0 mm for a few different values
of the horizontal beam spread σx (Figure 9.2a), and different values of the beam
momentum spread σp (Figure 9.2b). In the simulation the effect of multiple scat-
tering, and the target dimensions were taken into account. The generated events
were next analyzed in the same manner as those from the experiment, and the
value of σy was evaluated. The reconstructed value of σy amounts to ∼ 4.2 mm in
case of the pp → pp reaction and σy ≈ 5.8 mm in case of the pp→ ppη′ reaction
independently of the value of σx or σp.

The very good agreement of the simulated and experimental data allows to
determine the standard deviation of the vertical beam spread to be σy = 4.0 mm,
which differs by only 12.5 % from the value σy = 4.5 mm determined from the
beam optics. Therefore, for the further evaluation of the detection acceptance the
averaged value σy = 4.3 mm will be used. In case of the horizontal beam spread
the value of σx = 4.1 mm derived from the beam optics will be applied, since
there is no possibility of establishing it from the experimental data.

With σy and σx one can now estimate a value of the beam momentum spread
from the experimental data.

The fit of the Gaussian distribution to the missing mass spectrum, measured at
a beam momentum of Pbeam = 3222 MeV/c, as shown in Figure 8.1a on page 51,
gives the standard deviation of the missing mass spread of σmm = 0.68 MeV .
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This spread is caused i) by the finite dimension of the beam-target overlap, ii)
by the inaccuracy of the track reconstruction, which is due to the drift chamber
position resolution and the effect of the multiple scattering, iii) by the spread
of the beam momentum, and iv) by the natural width of the η′ meson Γη′ ≈
0.2 MeV/c2. With the known conditions for i) the beam and the target, and
ii) the drift chamber position resolution, one can estimate the beam momentum
spread from the measured spread of the missing mass spectrum. From Figure 9.2c
it can be deduced that the beam momentum spread is ∆p = 1.3 MeV/c, which
is close to the value ∆p = 1.1 ± 0.1 MeV/c obtained from the measurement of
the beam revolution frequency spread. Again, the mean of the values from both
methods, ∆p = 1.2 MeV/c, will be taken for further considerations.
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Figure 9.2: Results of the analysis of the simulated events. In (a) and (b), the solid
circles correspond to the pp→ ppη′ reaction and the open squares to the pp → pp

one. (a) The reconstructed value of σy as a function of the value of σx used in
the simulations. (b) The reconstructed vertical beam extension versus the beam
momentum spread used in the Monte Carlo calculations. (c) Dependence of the
missing mass resolution on the beam momentum spread, as obtained from the Monte
Carlo simulations with the beam momentum of 3222 MeV/c, the target diameter of
9.0 mm, Γη′ = 0.201 MeV/c2, and with the vertical and horizontal beam spread equal
to σx = 4.1 mm and σy = 4.3 mm, respectively. The experimental value of the missing
mass spread σmm = 0.68 MeV implies the beam momentum spread of ∆p ≈ 1.3 MeV/c

as indicated by the dashed line.

9.4 Geometrical acceptance

The detection efficiency Eeff comprises the geometrical acceptance of the
detection system and the ability of the event reconstruction from the registered
signals.

The geometrical acceptance for the pp→ ppη′ reaction is shown in Figure 9.3a
as a function of the beam momentum above threshold. This acceptance, defined
here as the ratio of the number of events for which two protons reach the S3
detector to the number of events generated in the target, depends on the angular
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distribution of the reaction products. Though the exact angular distribution is
not known, it could be assumed, that it is predominantly determined by the
three body phase space and the final state interaction of the outgoing protons,
which is especially strong for protons with small relative momentum at a 1S0

wave [133, 134].
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Figure 9.3: Efficiency of the detection system for the pp→ ppη′ reaction as a function
of the beam momentum above threshold (lower axis), or as a function of the excess
energy (upper axis)
(a) The efficiency obtained assuming the point-like target and the ideal proton beam
with no spread in momentum or space. Full triangles indicate the computation per-
formed under the assumption that the momentum distribution of the outgoing particles
is governed by the three body phase space only. Taking into account the proton-proton
final state interaction gives the open circles (see appendix C). (b) Open circles are
the same as in Figure a). Stars indicate the ratio defined in a) but taking into account
the natural width of the η′ meson and the real beam and target dimensions. For the
open triangles and solid circles additionally the beam momentum spread was included
in the simulations.

Figure 9.3a depicts that the efficiency obtained with and without proton-
proton final state interaction differs by about 9 % at a beam momentum of
3222 MeV/c (∆Pbeam above threshold ≈ 14 MeV/c) and by about 4 % at a
beam momentum of 3214 MeV/c (∆Pbeam above threshold ≈ 6 MeV/c).

The real beam and target dimensions and the effect of the multiple scattering
included in calculations, decreases the efficiency by about 2 %. A further decrease
of about 3 % is caused by the nuclear reactions in the detector media and air.
The 3 % losses due to the nuclear reactions, obtained by means of the GEANT
simulation program agrees with rough estimations. Namely, before the two pro-
tons produced in the target reach the S3 detector they pass through the S1, S2
and S7 scintillators, which altogether constitutes 1.4 cm of the plastic scintillator
material. One cubic centimeter of such material contains about 5.2 ·1022 atoms of
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hydrogen and about 4.7 ·1022 atoms of carbon [103]. Taking the total cross section
for the proton-proton reaction as ∼ 40 · 10−27 cm2 [25] and for the proton-carbon
as ∼ 280·10−27 cm2 3 one obtains, that at least one of the two protons will undergo
a nuclear reaction in the S1, S2 or S7 scintillators with 4 % probability 4.

The beam momentum spread influences the value of the efficiency Eeff as
well, which is particularly strong, if the spread is comparable with the value of
the beam momentum above the reaction threshold. As an extreme example let us
consider a measurement with the beam momentum being exactly the threshold
momentum but with a finite spread. Then only half of the protons circulating in
the accelerator ring possess enough energy to initiate the studied reaction, whereas
all of them could contribute to the elastic scattering.

Figure 9.3b shows that a beam momentum spread of 1.2 MeV/c causes changes
of the efficiency in the order of 2 % for the beam momentum ranging between
6 MeV/c and 14 MeV/c above threshold. This figure depicts also that the number
of registered events, in this momentum range, would grow with the increasing
beam momentum spread. As an example the calculations for the σp = 3.0 MeV/c
are shown by full circles.

9.5 Efficiency of the track reconstruction in the

drift chambers

The efficiency of the track reconstruction for events with two simultaneously
registered particles influences significantly the overall detection efficiency as can
be seen in figure 9.4a. For the calculations of the reconstruction efficiency, the
program for track reconstruction was applied to a sample of events generated
by the Monte Carlo method. For the generation of the drift chamber signals,
the two-track-resolution was taken to be 3 mm as established in chapter 5.1. It
means that two tracks in a given detection plane being closer than 3 mm were
only registered as one signal. The position resolution of the detection cell was
simulated by smearing out the distance between the sense wire and the particle
trajectory. The distances were smeared out according to the Gaussian distribution
with the standard deviation of 0.25 mm, which was evaluated also in chapter 5.1.

Figure 9.4b shows that the reconstruction efficiency decreases strongly with the
worsening of the two-track-resolution and with the decreasing beam momentum
above threshold. The latter is due to the decreasing distances between tracks in
the drift chambers the closer the threshold is approached.

3According to the Glauber theory the total cross section for the proton-carbon reaction is
approximately given by σpC = σpp · 120.78 [135].

4A probability that one proton causes a nuclear reaction flying through the scintillator of
1.4 cm thickness amounts to: P = 1.4 · 4.7 · 1022 · 280 · 10−27 + 1.4 · 5.2 · 1022 · 40 · 10−27 = 0.021.
Thus, the probability that at least one proton out of two will cause a nuclear reaction equals
1− (1− P )2 = 0.04.
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Figure 9.4: (a) Simulated efficiency of the detection system as a function of the beam
momentum above threshold (lower axis), or as a function of the excess energy (upper
axis). The triangles are the same as in figure 9.3b. Stars indicate the ratio of the
number of events for which both proton trajectories were reconstructed to the number
of all generated events. The solid squares indicates the ratio of the number of events
which fulfiled all requirements demanded in the analysis to the number of all gener-
ated events. (b) Efficiency of the two track reconstruction as a function of the
two-track-resolution of the drift chambers. The two-track-resolution was estimated to
be 3.0 mm± 1.0 mm, where the error of ±1.0 mm causes the inaccuarcy of the recon-
struction efficiency of about ±8%. (c) The overall detection efficiency as a function of
the beam momentum spread for the nominal beam momentum of Pbeam = 3222 MeV/c

and Pbeam = 3214 MeV/c. Taking the beam momentum spread of 1.2 MeV/c with
the accuracy of ±0.1 MeV/c one obtains the changes of the detection efficiency of
±0.5%.

The two-track-resolution is established with an accuracy of ±1 mm. Thus,
changing it from 3 mm to 4 mm one observes the variation of the reconstruction
efficiency by 8 %. Contribution to the systematical error from the inaccuracy
of the beam momentum spread is much smaller and amounts to ∼ 0.5%, see
figure 9.4c.

The relative position of the detectors, the dipole magnet, and the target is
known with the accuracy of ∼ 2 mm, which may lead to the error in acceptance
smaller than 1 %. Similarly the errors of regarding losses caused by multiple
scattering and nuclear reaction is smaller than 1 %. Finally, the error of the
efficiency due to the inaccuracy of the calculations of the proton-proton final
state interaction is assumed to be smaller than 0.5%, since the whole effect causes
changes smaller than 9% and the parameters of the proton-proton scattering are
well known (see appendix C).

Summarizing the contributions from all above effects the systematical error of
the detection efficiency evaluation is established to be 11 %.

The full squares in figure 9.4a denote the overall detection efficiency obtained
regarding all discussed effects and the requirements used in the data analysis.
Table 9.1 gives values of the detection efficiency Eeff evaluated for the real beam
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momenta of the measurements presented in this work.

Pbeam systematical error Eeff systematical error
real [MeV/c] of Pbeam [MeV/c] detection efficiency of Eeff = 11 %

3213.1 1.1 0.225 0.025
3213.5 1.1 0.209 0.023
3217.5 1.1 0.139 0.015
3221.1 1.1 0.106 0.012

Table 9.1: Detection efficiency

9.6 Energy loss analysis - events with close

flying particles

The aim of the following analysis is to check the value of the efficiency for the
reconstruction of two tracks as established by the Monte Carlo simulation in the
previous sections.

For the evaluation of the number of the pp→ ppη′ reactions, presented in
section 6.4 only those events were considered for which at least two tracks were
reconstructed from the signals in the drift chambers. This analysis gave N =
164.3 ± 23.4 at a nominal beam momentum of Pbeam = 3222 MeV/c, where the
efficiency of the two track reconstruction amounts to 68% as shown in Figure 9.4b,
leaving 77±11 events corresponding to the pp→ ppη′ reaction to be found among
events with only one reconstructed track.

A method based on the energy loss analysis is used for the identification of
events with two close protons, for which only one track was reconstructed. Select-
ing such events and assuming that both protons have the same momentum it is
possible to calculate the mass of a non-observed system which should be equal to
the η′ meson mass in the case of the pp→ ppη′ reaction. If the obtained number
of events with the η′ production, among events of one reconstructed track, will
be consistent with 77± 11 then the evaluated reconstruction efficiency would be
confirmed.

At first, the energy loss information was used for the identification of the
number of registered particles.

Figures 9.5a,b,c show the normalized energy loss distribution corresponding
to one proton (white histogram) or two protons (shaded histogram) crossing the
S1, S2 or S3 detectors, respectively. The spectrum for the S7 detector, not shown
here, looks similarly as this of the S1 counter. The values presented on the hor-
izontal axis are equivalent to the energy loss measured in detectors divided by
the expected energy loss for one proton. The expected energy loss was calculated
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multiplying the stopping power, which depends on the particle velocity, by the
path length in the scintillator material. The velocity is known from the time of
flight measurement, and the values of the stopping power was taken from the
literature [136].
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Figure 9.5: Energy loss spectra for one and two particles crossing the scintillation
detectors. The energy loss is normalized to the expected energy loss for one particle
obtained from the known stopping power and the path length in the scintillator. The
shaded histogram corresponds to two particles crossing the detector. The number of
entries per energy bin was normalized so that the sum over all bins is equal to 1.
(a) Energy loss for the S1 detector, (b) for S2 and (c) for S3.
In the case of the S1 detector, with the thickness of 4 mm, the energy distribution has
the Vavilov [107] form and for the S3 detector having a thickness of 50 mm it is close
to the Gaussian function. In the case of the S2 scintillator having thickness of 2.0 mm

one would expect the form close to the Landau [107] distribution, however the observed
one is rather the Gaussian. This is because of the relatively poor resolution of the light
collection in this thin and long detector.

Each event is characterized by a set of five values of the normalized energy
loss measured in the scintillation detectors, namely:

∆E ≡ (∆ES1, ∆ES2, ∆ES3, ∆ES7a, ∆ES7b).

The white and shaded histograms in Figures 9.5 can be treated as the probability
functions for the registration of the given energy loss if one or two protons crossed
the detector, respectively. Calling this probability functions gSj

i as indicated in
Figures 9.5 one can define a probability that a given set of measured ∆E values
corresponds to one registered track, namely:

P1tr(∆E) = gS1
1 (∆ES1) ·gS2

1 (∆ES2) ·gS3
1 (∆ES3) ·gS7a

1 (∆ES7a) ·gS7b
1 (∆ES7b), (9.4)

and similarly the probability P2tr that the given set of ∆E values corresponds to
the event with two tracks is given by:

P2tr(∆E) = gS1
2 (∆ES1) ·gS2

2 (∆ES2) ·gS3
2 (∆ES3) ·gS7a

2 (∆ES7a) ·gS7b
2 (∆ES7b), (9.5)
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In order to decide, for each event, whether the measured set of ∆E values is
due to one or two protons crossing the detectors the Neyman-Pearson test [137]
was used, which here is the most powerful one. Thus, for each event a ratio of the
likelihoods α = P2tr/P1tr was calculated, and for α > α0 the event was regarded
as if two protons crossed the detectors. The criterion α0 and the functions g
from Figures 9.5 determine the probability for making an error by accepting the
hypothesis that two particles cross the detectors when it is false. This error called
contamination can be calculated by summing the probability P1tr over the whole
range of the ∆E values where the requirement that α = P2tr/P1tr > α0 is fulfiled.
Hence:

contamination =
∑

P1tr(∆E)Θ(α− α0), (9.6)

where the summation is over the whole ∆E space, and Θ denotes the Heaviside
function. Similarly one can calculate the probability for making an error of re-
jecting the hypothesis that two particles cross the detectors when it is true, which
is called loss:

loss =
∑

P2tr(∆E)Θ(α0 − α). (9.7)
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Figure 9.6: (a) Contamination - the probability of accepting the hypothesis that two
particles cross the detector when it is false. Loss - probability of rejecting the hypothesis
that two particles cross the detector when it is true. Both quantities are shown as a
function of the probability ratio α0 defined in the text. The calculations were performed
applying equations 9.6 and 9.7. (b) Missing mass spectrum obtained under the
assumption that events with the probability ratio α larger than 105 are with two close
tracks crossing the detectors. The dashed line corresponds to the measurement below
threshold at a beam momentum of Pbeam = 3201 MeV/c and the solid line indicates
the measurement above threshold at Pbeam = 3222 MeV/c (c) Difference between
solid and dashed histogram from b).

By choosing the parameter α0 one has to find the compromise between the
number of lost events with two protons and the contamination of the selected
sample with the events with one proton.

For the measurement at Pbeam = 3222 MeV/c about 8 106 events with one
reconstructed track were registered. Among them we expect about 1000 events



with two close flying protons. The number 1000 is deduced from the missing mass
spectrum in Figure 6.5, where ∼ 163 events are due to the pp→ ppη′ reaction
and about 2000 events from the multi pion production. Now we expect to find
∼ 77 pp→ ppη′ reactions, hence 77

163
· 2000 ≈ 1000. Thus, the discussed sample of

data consists of about 8·106

1000
≈ 104 times more events with one proton than with

two protons. Therefore the parameter α0 was chosen to be α0 = 105 which will
suppress the number of events with one proton by more than a factor of 106 losing
only ∼ 10% of events with two close flying protons, see Figure 9.6a.

In order to select the events with two protons out of all events with one recon-
structed track the Neyman-Pearson test with a parameter α0 = 105 was applied
to the data taken at Pbeam = 3201 MeV/c and at Pbeam = 3222 MeV/c. Further
the missing mass spectra were evaluated, as shown in Figure 9.6b, by assuming
that both protons have the same momentum. The dashed histogram for the beam
momentum of Pbeam = 3201 MeV/c is already normalized to the measurement at
Pbeam = 3222 MeV/c according to the integrated luminosity, and shifted to the
kinematical limit defined by Pbeam = 3222 MeV/c. Subtracting the histogram
below threshold from the one above threshold one obtains a spectrum, shown in
Figure 9.6c, with an enhancement at the position corresponding to the mass of
the η′ meson.

The number of pp→ ppη′ events in the peak amounts to 85 ± 33 5, which is
consistent with the expected 77±11 events, and hence authenticate the two track
reconstruction efficiency evaluated by the Monte Carlo simulations.

5Taking into account a 10% loss one obtains ∼ 94± 36 events, which is still consistent with
77± 11.
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10. Total cross section

Let us recall the formula for the total cross section:

σ(Q) =
N(Q, T )/Eeff(Q)

L(T )
, (10.1)

all quantities from this formula were established in previous chapters, for each
measurement period, and so, the number of measured η′ mesons N can be found
in table 6.1 on page 45. Table 7.1 on page 50 presents the obtained values of
luminosities L, table 8.1 on page 54 shows the true excess energies Q, and finally
values of the detection efficiency Eeff are listed in table 9.1 on page 63.

The obtained values of the total cross section for the pp→ ppη′ reaction are
summarized below in table 10.1 and are published in Physical Review Letters [18].

beam beam excess total statistical systematical
momentum momentum energy cross error of σ error of σ

Pbeam above Q section [nb] = 14%
[MeV/c] threshold [MeV] σ [nb]

∆Pbeam [nb]
[MeV/c]

3221.1 ± 1.1 12.8 ± 1.1 4.1 ± 0.4 25.2 3.6 3.5
3217.5 ± 1.1 9.2 ± 1.1 2.9 ± 0.4 12.7 3.2 1.8
3213.5 ± 1.1 5.2 ± 1.1 1.7 ± 0.4 2.9 1.1 0.4
3213.1 ± 1.1 4.8 ± 1.1 1.5 ± 0.4 2.5 0.5 0.4

Table 10.1: Values of the total cross sections for the η′ meson production in pro-
ton-proton collisions at four excess energies close to threshold.

The overall systematical error amounts to 14%, where 11% comes from the
determination of the detection efficiency Eeff and 3% from the luminosity mea-
surement.

The obtained values of the total cross section are compared in Figure 10.1 with
the recently reported measurements performed at the SATURNE accelerator using
the SPES3 spectrometer [20]. A satisfactory agreement in the value of the absolute
cross section is observed where the two experiments meet around Q = 4 MeV . In
addition, Figure 10.1 shows the total cross sections for the production of π0 and η
-the remaining two flavour neutral mesons from the lightest pseudoscalar nonet-
in proton-proton collisions near threshold.
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It is worth noting, that also the total cross section for the pp→ ppη reaction
measured at the COSY - 11 facility, indicated by a filled star, agrees well with the
results obtained at the CELSIUS and SATURNE accelerators.

1

10

10 2

10 3

10 4

0 2 4 6 8 10 12 14 16 18 20
excess energy in CM [ MeV ]

to
ta

l c
ro

ss
 s

ec
tio

n 
[ n

b 
]

pp → pp π0

pp → pp η
pp → pp η′

Figure 10.1: Total cross section for the reactions:
pp→ ppπ0 , pp→ ppη , and pp→ ppη′ as a function of the excess energy.
pp→ ppπ0 : CELSIUS [71](open circles), IUCF [70, 69](open dimonds and squares)
pp→ ppη : CELSIUS [78](filled circles), SPES3 [20, 138](filled triangles (up)),

PINOT [79](filled triangles (down)), COSY - 11 [139](filled star)
pp→ ppη′ : this work (filled squares), SPES3 [20](open triangles)

The mesons π0 and η are produced with rather similar cross sections, whereas
the reaction yield for the η′ meson is more than one order of magnitude smaller.
However, the differences in the total cross section at the same excess energy can
not be translated directly to the differences in the production amplitude, since the
available phase space at a given excess energy depends on the produced meson
mass. Therefore some speculations about the eventual differences in the produc-
tion mechanisms between the η′ meson and π0 or η ones are left to section 11.4,
where the production amplitudes will be derived and compared. This specula-
tions will be preceded by the presentation of the influence of the proton-proton
final state interaction on the total cross section energy dependence, and by the
comparison of the data with model predictions.



11. Comparison with model
predictions

11.1 proton-proton final state interaction

The cross section for the reaction pp→ ppη′ can be expressed, as shown in
Appendix A (equation A.16), in the following Lorentz invariant form

σpp→ppη′ =

∫
phase space · |Mpp→ppη′|2

flux factor
=

∫ i=3∏

i=1

d3~pi

2Ei

δ4

(
pb + pT −

i=3∑

i=1

pi

)
|Mpp→ppη′|2

4(2π)5
√

(pbpT )2 −m2
bm

2
T

,

(11.1)
where, the following notation is used:
pb = (Eb, ~pb) - four momentum vector of a beam proton,
pT = (ET , ~pT ) - four momentum vector of a target proton,
pi = (Ei, ~pi), i=1,2,3 - four momentum vectors of particles in the exit channel,
Mpp→ppη′ - transition matrix element for the pp→ ppη′ reaction.

In analogy with the Watson-Migdal approximation [140] for two body pro-
cesses, it can be assumed that the complete transition amplitude of a production
process Mpp→ppη′ factorizes approximately as [4, 141]:

Mpp→ppη′ ≈M0 ·MFSI (11.2)

where, M0 accounts for all possible production processes, and MFSI describes the
elastic interaction of protons and η′ meson in the exit channel. The proton-proton
interaction in the initial channel is not considered close to threshold as this varies
slowly with energy and would have little influence on the energy dependence [141].

An exact evaluation of the production amplitude M0 would require the knowl-
edge of all appropriate coupling constants and the form factors needed for the cal-
culations of the production amplitudes illustrated by the diagrams in Figures 3.3
and 3.4. On the other hand, the exact calculation of the MFSI amplitude, would
require the usage of the Faddeev formalism and the knowledge of the proton-
proton and proton-η′ forces.

Let us, at first assume that the production amplitude M0 is constant over the
entire phase space near threshold, and that only proton-proton elastic scattering
takes place in the exit channel.

Sufficiently close to threshold, the amplitude corresponding to the 3P0 → 1S0

transition in the proton-proton system has a dominant contribution to the pp→ ppη′
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reaction, as shown in appendix D. That is why it is enough to consider the 1S0 -
wave scattering of the outgoing protons.

These assumptions lead to the following formula for the total cross section, see
appendix C (equation C.8):

σpp→ppη′(Q) = const·
qmax(Q)∫

0

dq · q2 · p

C4p2 +

(
− 1

app
+
bpp · p2

2
− Ppp · p4

1 +Qpp · p2
− 2 · p · ηc · h(ηc)

)2 ,

(11.3)
where, app = −7.82 fm denotes the scattering length for the proton-proton in-
teraction, bpp = 2.79 fm indicates the effective range, and Ppp = 0.73 fm3 and
Qpp = 3.35 fm2 [142] depict the shape coefficients defined in appendix C. Half
of the relative proton-proton momentum is denoted by p = p(q, qmax), whereas q
indicates the meson momentum in the centre-of-mass system, and Q the centre-
of-mass excess energy. C2 stands for the Coulomb penetration factor and ηc and
h(ηc) -Coulomb parameters- are defined in appendix C.
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Figure 11.1: Energy dependence of the total cross section as given by the phase space
factors and the proton-proton final state interaction (solid line). The experimental
values of the total cross section for the pp→ ppη′ reaction are indicated by filled squares
(this work) and by open triangles (SPES3 [20]). The shown errors take account of both
statistical and systematical uncertainties.

The solid line in Figure 11.1 shows the anticipation of equation 11.3 with a
value of the coefficient const adjusted to the experimental points at energies lower
than Q = 2 MeV . The discrepancy between the solid line and the experimental
points for excess energies larger than Q = 2 MeV may reflect the proton-η′
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interaction or the variation of the production amplitude M0 with the excess energy,
because in the derivation of equation 11.3 both these possibilities were neglected.

In case of the pp→ ppη reaction, a similar deviation of the energy dependence
for the total cross section from the predictions based on the phase space and the
proton-proton final state interaction was taken as an evidence for the η-proton
interaction [4, 141, 78]. Albeit η-proton interaction is much weaker than the
proton-proton one (compare apη = (0.5 + i0.3) fm [4, 143] with app = −7.82 fm),
it becomes important through the interference terms, since the MFSI amplitude
is coherent in terms involving the various final pair interactions [4].

Thus, we may speculate that at very low energies the proton-η′ interaction is
repulsive, and hence caused the suppression of the total cross section very close to
threshold. On the other hand, the observed deviation of the experimental points
from the solid line may be attributed to the increase of the primary production
amplitude with the increasing excess energy. At present, however, we can not
prove any of these hypotheses.

11.2 One-pion-exchange model

In the previous section, it was assumed that the production amplitude M0 is
constant but nothing was assumed about its value and hence the absolute value
of the total cross section could not be predicted. Now it will be presented how
one can deduce the absolute value of the close to threshold total cross section of
the pp→ ppη′ reaction from the total cross section of the pp→ ppη reaction using
the one-pion-exchange model as suggested by the authors of references [20, 144].

In the one-pion-exchange model, it is assumed that the π0 meson is emitted
by one proton and converts to the η′ meson on the second one [20, 144].

If the initial proton-proton distortion and the final proton-η′ interaction are
neglected then this model gives the following form for the S-wave contribution (in
the exit channel) to the total cross section of the pp→ ppη′ reaction [20]:

σpp→ppη′(Q) = A · (mp +mη′)
2

(2mp +mη′)5/2
·

√
mη′

(mpmη′ +m2
π)2
· |f(π0p→ pη′)|2 ·F (Q), (11.4)

where, mp, mη′ andmπ denote the proton, η′, and π masses, respectively, |f(π0p→
pη′)|2 = 10 µb/sr [20] stands for the spin avarage of the square of the π0p →
pη′ amplitude, and the function F (Q) describes approximately the effect of the
proton-proton final state interaction [145]:

F (Q) = ǫ
(
Q

ǫ

)2

1 +

√

1 +
Q

ǫ



−2

, (11.5)

where, including Coulomb distortion, ǫ ≈ 0.45 MeV . This parametrization of the
proton-proton final state interaction gives within the accuracy of a few per cent the
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same result as the exact formula of equation 11.3. This allows, however, to infer
that the influence of the proton-proton final state interaction on the production
cross section is fairly independent of the produced meson mass, and depends only
on the centre-of-mass excess energy [146].
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Figure 11.2: Total cross section for the pp→ ppη and pp→ ppη′ reactions as a func-
tion of the excess energy Q.
pp→ ppη : CELSIUS [78](filled circles), SPES3 [20, 138](filled triangles (up)),

PINOT [79](filled triangles (down)), COSY - 11 [139](filled star)
pp→ ppη′ : this work (filled squares), SPES3 [20](open triangles)
The errors shown for the pp→ ppη′ points take account of both statistical and system-
atical uncertainties, whereas in case of the pp→ ppη reaction only statistical errors are
indicated.

The value of the overall factor A in equation 11.4 does not depend on the η′

meson properties [20], and therefore it should be the same for the counterpart of
equation 11.4 describing the total cross section of the pp→ ppη reaction. Thus,
knowing the threshold value for the |f(π0p → pη)|2 = 365 µb/sr, and the total
cross section for the pp→ ppη reaction it is possible to calculate the value of the
factor A, and hence to predict the total cross section for the pp→ ppη′ reaction,
since the |f(π0p → pη′)|2 is known, and since the influence of the proton-proton
interaction depends approximately only on the value of Q.

The total cross section for the pp→ ppη reaction, obtained from the one-pion-
exchange model, with the value of A adjusted to fit the lowest energy points of
η production, is shown by the dashed line in Figure 11.2. The application of the
same value of A in equation 11.4 for the calculation of the pp→ ppη′ total cross
section, results in the solid line.
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The predicted absolute values of the total cross section for the pp→ ppη′

reaction agree at the lowest energy points. This agreement shows that the rel-
ative close to threshold production of the η and η′ mesons is comparable in the
pion-proton and proton-proton collisions. However, we are still not able to infer
anything about the relative contribution of a different production mechanisms of
the pp→ ppη′ reaction.

Since in this parametrization the energy dependence of the total cross section
is determined, as in the previous section, by the phase space and the proton-proton
final state interaction one can explicitly see the deviation between the predictions
and the data which is explained by the attractive ηpp interaction [78, 20, 4, 141].
One sees also, as in Figure 11.1, that the energy dependence of the production
amplitude as given by the phase space and proton-proton final state interaction
is not enough to describe the pp→ ppη′ reaction cross section.

11.3 Born-term - upper limit for the ppη′

coupling constant

The production amplitude M0 can be calculated only if the appropriate cou-
pling constants and the reaction mechanisms are known. Some possible produc-
tion mechanisms are discussed in section 3.2 (see Figures 3.3 and 3.4), but their
contributions are not evaluated yet. The only, till now, performed calculations
take account of the direct radiation of the η′ meson by protons, as illustrated
in Figure 3.3a. The calculations were performed in the effective Lagrangian ap-
proach (see section 3.3). The initial and final proton-proton interactions were
included as given by the folded-diagram nucleon-nucleon potential (OBEPF) [97].

It is not possible, however, to define the absolute contribution from the direct
production since the value of the coupling constant gη′pp is not established. There
exist some contradictory predictions, discussed in section 3.3, which implies that
gη′pp amounts to about five or that gη′pp is equal to 2.48+0.59

−0.65 or that gη′pp is smaller
than 1.

Since, the gη′pp coupling constant is the only free parameter in these calcula-
tions it can be adjusted to fit the experimental data. Figure 11.3 compares the
result of the calculations with the experimental data, where the value of coupling
constant gη′pp was taken to be 2.2.

With the assumption that the production amplitudes from the heavy meson
exchange (Figure 3.3c) and other possible mechanisms have the same sign as the
amplitude of the direct term, the value gη′pp = 2.2 can be taken as an upper limit
for the gη′pp coupling constant. This result is consistent with the predictions of
the dispersion method and the calculations based on the quark contribution to
the proton spin, see section 3.3.

The assumption about the signs of the amplitudes is plausible, since for ex-
ample, the positive interference between direct and heavy meson production was
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found in case of the pp→ ppπ0 reaction [72].
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Figure 11.3: Total cross section for the pp→ ppη′ reactions as a function of excess
energy Q. The dashed curve presents the result of the calculation where only the
direct production was considered. Experimental points are taken from: this work (filled
squares), and SPES3 [20](open triangles).

11.4 Comparison of the production amplitudes

for the pp→ ppπ0, pp→ ppη, and pp→ ppη′

reactions

If we assume that the primary production amplitude does not change with the
excess energy, and that only the proton-proton interaction is present in the exit
channel we can calculate M0 according to the following equation:

|M0| =
√√√√√
flux factor · σpp→ppη′∫
phase space ·M2

FSI

=

√√√√√√√√

σpp→ppη′ · 4(2π)5 ·
√

(pbpT )2 −m2
bm

2
T

∫ i=3∏

i=1

d3~pi

2Ei
δ4

(
pb + pT −

i=3∑

i=1

pi

)
|Mpp→pp|2

,

(11.6)
for which some integration were performed in appendix C in order to enable the
numerical calculation. The meaning of parameters is described in section 11.1,
particularly Mpp→pp denotes the proton-proton scattering amplitude. According
to this equation and the experimental values of the total cross section one can
evaluate the modulus of the M0 amplitude and verify whether it is realy constant
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as was assumed for its derivation. A deviation from a constant would reflect a
proton-η′ interaction or the variation of |M0|.
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Figure 11.4: Modulus of the dimensionless primary production amplitude M0 as de-
fined in equation 11.6. The symbols show the results extracted from the exprimental
data for the reactions pp→ ppπ0 (open triangles) [71, 70, 69], pp→ ppη (filled
circles) [78, 20, 138, 79, 139], and pp→ ppη′ (filled squares) - data from this work
and reference [20].

Figure 11.4 compares the extracted absolute values for the modulus of ampli-
tudes for the near to threshold production of the π0 (triangles), η (circles) and
η′ (squares) mesons. It can be seen that |M0| is indeed fairly constant for excess
energies larger than 3 MeV for all these reactions. Whereby very close to thresh-
old it decreases rapidly for the pion production with the similar tendency for the
η′, whereas in case of the η mesons it increases.

Thus completing the conclusions drawn in the previous sections, the behaviour
of the extracted |M0| can be attributed to the attractive interaction of the proton-
eta and repulsive interaction of the proton-pion and proton-η′ or to the actual
variation of the primary production amplitude very close to the reaction threshold.

The large difference between the absolute values of the obtained modulus of
the production amplitude for η and η′ mesons, may suggests that the production
mechanisms for these mesons are different. And since it is known that the η is
produced via the excitation of the baryonic resonance, thus probably it is not the
case for the η′ production.
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12. Conclusion and perspectives

For the first time the total cross section for the production of the η′ meson
has been measured near the kinematical threshold. The experiment has been
carried out at the COSY accelerator using the internal beam and the COSY-11
facility, which allows for the detection of the final protons, whereas the η′ meson
is identified by means of the missing mass techniques.

The values evaluated for the total cross section, at the centre-of-mass excess
energy range between 1.5 MeV and 4.1 MeV , are about a factor of 50 less than
the corresponding values for the η or π0 meson production at the same excess ener-
gies. The obtained results are consistent with the recently reported measurements
performed at the SATURNE accelerator at the centre-of-mass excess energies of
3.7 MeV and 8.3 MeV [20].

It would be very interesting to evaluate the production mechanisms, and es-
pecially to establish the contributions to the production process from the meson-
exchange current and from the fusion of gluons emitted from the colliding pro-
tons. An answer to this question requires and “deserves a dedicated theoretical
study” [5]. Unfortunately, at present only a simplest possibility of a direct emis-
sion of the η′ meson from the colliding protons was studied theoretically and
other more complitcated production mechanisms are not evaluated so far.

The comparison of the data with the results of the calculations based on the ef-
fective Lagrangian approach, where only a direct production mechanism has been
considered, yields an upper limit for the η′pp coupling constant to be gη′pp < 2.2,
provided that the assumption of the signs of other possible amplitudes are correct.
This result is compatible with the estimation based on the quark contribution to
the proton spin and with the determination based on the dispersion method, see
section 3.3. It would be interesting now to calculate the contribution to the total
cross section from heavy mesons exchange and other possible terms. The ex-
perimental determination of the coupling constant is very important since this
quantity, in principle, comprises the information of the meson structure, which
in case of the η′ is not well established as discussed in chapter 2. Especially
interesting would be to determine both gηpp and gη′pp coupling constants, which
for example could verify equation 3.3 derived in section 3.3.

It is not possible at present to deduce univocally whether the production of
the η′ meson in the proton-proton collision is mediated by a baryonic resonance.
Till now, the experimentally measured values of the total cross sections for the
pp→ ppη′ reaction cover only a small range of excess energies and can not reveal
the enhancement in the energy dependence of the total cross section from the
probable excitation of the much broader predicted resonances. The absolute value
of the total cross section or the absolute value of the derived production amplitude
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comprises this information, however, again at the present stage of the theory of the
η′ production any quantitative conclusions are not possible. One can only naively
speculate that the large difference in the primary production amplitudes between
the η and η′ suggests that the η′ primary production process is nonresonant, since
close to threshold the η meson is produced predominantly through the excitation
of the S11(1535) resonance [4, 3, 2, 20].

The planned theoretical investigations, devoted to the understanding and eval-
uation of the production by the meson-exchange currents may give an answer to
these questions.

The analysis of the energy dependence of the total cross section suggests that
either the primary production amplitude is not constant and decreases very close
to threshold or that the proton-η′ interaction has a repulsive character. However,
for the quantitative conclusions still more theoretical investigations are needed.

The obtained results encouraged to continue the investigation in order to es-
tablish the excitation function more precisely and in a larger excess energy range.
Further measurements were already performed at seven excess energies ranging
between Q = 3 MeV and Q = 15 MeV with about five times higher statistics than
the present measurements per energy point and with at least two times smaller
beam momentum spread due to the usage of the stochastically cooled beam.

In the near future, measurements at only one or two excess energies will be
carried out, in order to investigate the η′-proton interaction. It is planned to take
enough data to fill a Dalitz plot and to perform an analysis which would give the
correlation between the scattering lenght and the effective range for the η′-proton
potential. This will be performed by comparing the experimental Dalitz plot
with the ones obtained according to phase-space and to the assumed η′-proton
interaction. This method was proven to be useful in the investigations of the
Λ-proton interaction [147]. The data with high statistics will enable also a study
of the angular distribution of the produced η′ mesons.

Further plans concern the investigation of the momentum correlation of the
outgoing protons, which should deliver information about the size of the interac-
tion region and hence about the production mechanism [148].

A neutron detector available since last year at the COSY-11 facility, which was
designed by the author of this thesis, enables also the measurment of the η′ meson
production in the pd → ppnη′ reaction, which together with planned studies of
the pd → pdη′ and pd→3He η′ reactions will enable the investigations of the η′

meson production mechanism in the proton-neutron scattering. The investigation
of the η′ production via these reactions is very scarce. There exists only one value
for the near threshold total cross section of the pd→3He η′ reaction measured at
the SATURNE accelerator [11], and other reactions were not studied so far. It is
worth noting that the studies of the η′ production in proton-deuteron collisions
are also planned at the CELSIUS accelerator [149].
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A. Formula for the cross section

The cross section can be expressed as:

σ =
ω

|vb| ρb ρT
(A.1)

where
ω is the reaction rate per unit volume,
ρb - number of the beam particles per unit volume,
|vb| - velocity of the beam particle,
ρT - number of the target particles per unit volume.

Now we will consider the reaction pp→ ppη′ using the following notations:
pb = (Eb, ~pb) four momentum vector of a beam proton,
pT = (ET , ~pT ) four momentum vector of a target proton,
pi = (Ei, ~pi), i=1,2,3 four momentum vectors of particles in the exit

channel.
Considering a moving particle as a plane wave function φ = Ne−ipx it can be
shown that the probability density of finding this particle in a unit volume is
given by [150]

ρ = 2 N2 E (A.2)

The normalization condition
∫

V

ρ d3x = 1 ⇔ N2 =
1

2V E
(A.3)

and equation A.2 yield:

|vb| ρb ρT = |vb|
1

V 2
(A.4)

In order to describe the development in time of a given state Φ(t) a so called
S-matrix is introduced as follows:

Φ(+∞) = ŜΦ(−∞) (A.5)

The probability amplitude of the transition from the initial state Φi to the final
state Φf is given by a matix element Sfi =<Φf |Ŝ|Φi >. If Ŝ = 1 then there is
no reaction, i.e. initial and final states are the same. Therefore one introduces a
T-matrix describing the actual reaction, which is defined as follows:

Sfi = δfi − i(2π)4 δ4(pf − pi)Tfi (A.6)

Consequently the transition probability Wfi is given by

Wfi = |Sfi|2 f 6=i
====== (2π)8

(
δ4(pf − pi)

)2 |Tfi|2 = (2π)4δ4(pf − pi)|Tfi|2V t, (A.7)
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where, V denotes the total volume of space and t the total time in which the
interaction takes place. Dividing Wfi by V and t one obtains the transition
probability per unit time and unit volume.

ωfi =
Wfi

V t
= (2π)4 δ4(pf − pi)|Tfi|2 (A.8)

If we are not interested in the momenta of the outgoing particles then the ωpp→ppη′

-reaction rate per unit volume- for the pp→ ppη′ reaction can be calculated by
integrating ωfi over all possible momentum values in the exit channel. Thus,
changing Tfi into Tpp→ppη′ we get:

ωpp→ppη′ =
∫ i=3∏

i=1

d3~pi V

(2π)3
(2π)4 δ3(~pb + ~pT −

i=3∑

i=1

~pi) δ(Eb + ET −
i=3∑

i=1

Ei) |Tpp→ppη′|2,
(A.9)

where
i=3∏

i=1

d3~pi V

(2π)3
(A.10)

is the number of final states in the phase space volume. Substitution of ω in the
equation A.1 yields:

σpp→ppη′ =

V 2
∫ i=3∏

i=1

d3~pi V

(2π)3
(2π)4 δ3(~pb + ~pT −

i=3∑

i=1

~pi) δ(Eb + ET −
i=3∑

i=1

Ei) |Tpp→ppη′|2

|vb|
(A.11)

Defining the square of the Lorentz invariant transition matrix element as 1:

|Mpp→ppη′|2 = |Tpp→ppη′|2 2V ET 2V Eb 2V E1 2V E2 2V E3 (A.14)

and applying the relation:

|vb| Eb ET = [(pb · pT )2 −m2
b m

2
T ]

1
2 , (A.15)

the following expression of the cross section in a Lorentz invariant form is obtained:

σpp→ppη′ =

∫ i=3∏

i=1

d3~pi

2Ei

δ3(~pb + ~pT −
i=3∑

i=1

~pi) δ(Eb + ET −
i=3∑

i=1

Ei) |Mpp→ppη′|2

4(2π)5 [(pb · pT )2 −m2
b m

2
T ]

1
2

,

(A.16)

1Note that, for example, Bjorken and Drell [151] use another convention. They in the fermion

case multiply |T |2 by a factor of
EV

M
using the following normalization of Dirac spinors

ū(p, s′)u(p, s) = δs,s′ , (A.12)

whereas multiplying |T |2 by a factor 2V E implies that the Dirac spinors must be normalized as:

ū(p, s′)u(p, s) = 2Mδs,s′ (A.13)



Appendix A: Formula for the cross section 85

where expression 4(2π)5 [(pb · pT )2 −m2
b m

2
T ]

1
2 often denoted by F [122] is called

the flux factor and

∫ i=3∏

i=1

d3~pi

2Ei
δ3(~pb + ~pT −

i=3∑

i=1

~pi) δ(Eb + ET −
i=3∑

i=1

Ei) |Mpp→ppη′|2, (A.17)

is sometimes denoted by I3(s) [122]. Using this notation, the cross section may
be written in a compact form as:

σ =
I3(s)

F
(A.18)

where s is defined as (pb + pT )2 and
√
s is equal to the total energy in the centre-

of-mass system.
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B. Phase space factors

In this part the integration of equation A.16 will be performed, in order to
express σpp→ppη′ in terms of the maximum η′ momentum in the centre-of-mass
system.

In the centre-of-mass system equation A.16 has the following form:

σpp→ppη′ =
I3(s)

F
=

∫ i=3∏

i=1

d3 ~p∗i

2
√
m2

i + (~p∗i)
2
δ3(

i=3∑

i=1

~p∗i) δ(E
∗
i − E∗

f)|Mpp→ppη′|2

2 (2π)5 [s (s− 4 m2
p)]

1
2

,

(B.1)
where,

* - indicates a centre-of-mass system,
E∗

i , E
∗
f - total energy in the entrance and exit channel respectively,√

s - total energy in the centre-of-mass frame, and
mp - stands for the proton mass.

The total energy E∗
i of the initial channel is equal to the sum of the protons kinetic

energies T ∗i and their masses:

E∗
i = T ∗i + 2 mp, (B.2)

and in the exit channel the total energy E∗
f is equal to:

E∗
f = T ∗f + 2 mp + mη′ , (B.3)

where, T ∗f is the summed kinetic energy in the centre-of-mass in the exit channel
and mη′ is the mass of the produced η′. The δ(E∗

i − E∗
f) can be substituted by

δ(T ∗i − m∗
η′ − T ∗f ), and since the centre-of-mass kinetic energy of the outgoing

particles is small in comparison with their masses one can substitute also:
√
s by 2 mp +mη′ ,

√
m2

i + (~p∗i )
2 by mi, and

T ∗f by
∑i=3

i=1
( ~p∗i )2

2 mi
,

which gives:

σpp→ppη′ =

1
8 m2

p mη′

∫ i=3∏

i=1

d3 ~p∗i δ
3(

i=3∑

i=1

~p∗i) δ(T
∗
i −m∗

η′ −
j=3∑

j=1

~p∗j
2 mj

) |Mpp→ppη′|2

2 (2π)5 (2 mp +mη′) ((2 mp +mη′)2 − 4 m2
p)

1
2

(B.4)
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Making transformation into Jacobi coordinates system (see Appendix E) one ob-
tains:

σpp→ppη′ =

∫
d3 ~P d3~p d3~q δ(~P ) δ(T ∗i −mη′ −

~P 2

2M
− ~p 2

2µ
− ~q 2

2ν
) |Mpp→ppη′|2

16 (2π)5 (2mp +mη′)
√
m2

η′ + 4mpmη′ m2
pmη′

,

(B.5)
where, introduced quantities have the following meaning:

~P - total momentum in the centre-of-mass system,
~p - proton momentum in the two-protons system,
~q - η′ meson momentum in the reaction centre-of-mass system,
M = 2mp +mη′

µ =
mp

2
- reduced mass of the proton-proton system,

ν =
2mpmη′

2mp +mη′
- reduced mass of the η′ - two-protons system.

Since the transition matrix element Mpp→ppη′ is obviously independent of the mo-

tion of the centre-of-mass, integration over ~P yields:

σpp→ppη′ =

∫
d3~p d3~q δ(T ∗i −mη′ −

~p 2

2µ
− ~q 2

2ν
) |Mpp→ppη′|2

16 (2π)5 (2mp +mη′)
√
m2

η′ + 4mpmη′ m2
pmη′

. (B.6)

Making transformation into the spherical coordinates of ~p and ~q and denoting
|~p| by p and |~q| by q one gets:

σpp→ppη′ =

∫
dp dq dΩp dΩq p

2 q2 δ(T ∗i −mη′ −
p2

2µ
− q2

2ν
) |Mpp→ppη′|2

16 (2π)5 (2mp +mη′)
√
m2

η′ + 4mpmη′ m2
pmη′

(B.7)

Assuming that |Mpp→ppη′|2 does not depend on the orientation of the η′ mo-
mentum in the centre-of-mass system and on the relative protons momentum, an
integration over all angles gives:

σpp→ppη′ =

4π · 4π ·
∫
dp dq p2 q2 δ(T ∗i −mη′ −

p2

2µ
− q2

2ν
) |Mpp→ppη′|2

16 (2π)5 (2mp +mη′)
√
m2

η′ + 4mpmη′ m2
pmη′

(B.8)

The δ function in the above equation implies that the following equation must be
fulfilled:

T ∗i −mη′ −
p2

2µ
− q2

2ν
= 0, (B.9)

where, for a given T ∗i , q has a maximum value if p is equal to zero. Thus, putting
p = 0 one obtains:

q2
max = 2 ν (T ∗i −mη′) (B.10)
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This implies that equation B.8 can be rewritten as follows:

σpp→ppη′ =

∫
dp dq p2 q2 δ

(
q2

max − q2

2ν
− p2

2µ

)
|Mpp→ppη′|2

4 (2π)3 (2mp +mη′)
√
m2

η′ + 4mpmη′ m2
pmη′

(B.11)

In order to integrate over p the following theorem will be used:

δ(f(x)) =
∑

i

1

|f ′(x)|δ(x− xi), where f(xi) = 0. (B.12)

In our case

f(p) =
q2

max − q2

2ν
− p2

2µ
,

and hence

f(p) = 0 for p =

√
µ

ν
(q2

max − q2),

and

|f ′(p)| = p

µ
=

2p

mp
.

Applying this theorem to equation B.11 one obtains:

σpp→ppη′ =

∫
dp dq p q2 δ

(
p−

√
µ

ν
(q2

max − q2)
)
|Mpp→ppη′|2

8 (2π)3 (2mp +mη′)
√
m2

η′ + 4mpmη′ mpmη′
, (B.13)

which after the substitution of
µ

ν
by

mη′ + 2mp

4mη′
yields:

σpp→ppη′ =

∫
dp dq p q2 δ

(
p−

√
mη′ + 2mp

4mη′
(q2

max − q2)

)
|Mpp→ppη′|2

8 (2π)3 (2mp +mη′)
√
m2

η′ + 4mpmη′ mpmη′
(B.14)

Now the integration over p can be easily performed, provided that Mpp→ppη′ is
independent of p, giving:

σpp→ppη′ =

∫ qmax

0
dq q2

√
mη′ + 2mp

4mη′
(q2

max − q2) |Mpp→ppη′|2

8 (2π)3 (2mp +mη′)
√
m2

η′ + 4mη′mp mpmη′
(B.15)

Furthermore, assuming that |Mpp→ppη′|2 is independent of q one gets:

σpp→ppη′ =

√
mη′ + 2mp |Mpp→ppη′|2

∫ qmax

0
dq q2

√
q2
max − q2

16 (2π)3 (2mp +mη′)
√
m2

η′ + 4mη′mp mpm
3
2
η′

.
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Substitution of q by x·qmax, with x∈[0,1] gives:

σpp→ppη′ =

√
mη′ + 2mp |Mpp→ppη′|2 q4

max

∫ 1

0
dx x2

√
1− x2

16 (2π)3 (2mp +mη′)
√
m2

η′ + 4mη′mp mpm
3
2
η′

=

=

√
mη′ + 2mp |Mpp→ppη′|2 q4

max
π
16

16 (2π)3 (2mp +mη′)
√
m2

η′ + 4mη′mp mpm
3
2
η′

. (B.16)

It means that the total cross section governed by the phase space factors would
be proportional to the fourth power of the maximum η′ momentum in the centre-
of-mass system q4

max, or to the second power of the excess energy Q2, since in the
nonrelativistic limit Q ∼ q2

max (see equation F.1 in appendix F).



C. Proton-proton final state
interaction

The proton-proton scattering amplitude for the relative angular momentum
l=0 is expressed by [152]:

Mpp→pp =
eiδpp · sinδpp

C2 · p . (C.1)

In this equation p denotes a momentum of either proton in the centre-of-mass of
the collision partners, and δpp indicates the phase shift. The Coulomb penetration
factor C2 in the denominator is due to the Coulomb interaction between two
protons. This factor can be defined as a ratio of “the probability of finding
two protons close together to the probability of finding two uncharged particles
together, other things being equal” [153, 154]:

C2 =
2πηc

e2πηc − 1
, (C.2)

where, ηc denotes the so-called relativistic Coulomb parameter ηc = α/v, with
α being the fine structure constant and v being the proton velocity in the rest
system of the other proton. The factor C2 is always less than unity due to the
Coulomb repulsion between protons. At high energies, where C2 is close to unity
the nuclear scattering will be predominant, and for the very low energies nuclear
and Coulomb scattering are expected to compete. The limit is expected approx-
imately at 0.8 MeV of the proton energy in the rest system of the other proton,
where C2 = 0.5 [153] 1.

The phase shift δpp in equation C.1 is obtained from the modified Cini-Fubini-
Stanghellini formula, with Wong-Noyes Coulomb correction [155]:

C2 · p · ctgδpp + 2 · p · ηc · h(ηc) = − 1

app
+

1

2
· bpp · p2 − Ppp · p4

1 +Qpp · p2
, (C.3)

where, h(ηc) = −ln(ηc) − 0.57721 + η2
c ·
∑∞

n=1
1

n·(n2+η2
c )

[153]. Phenomenological
quantities app = −7.8 fm and bpp = 2.8 fm denote the scattering length and the
effective range, respectively. The parameters Ppp = 0.73 fm3 and Qpp = 3.35 fm2

are not phenomenological constants, they are related to the detailed shape of the
nuclear potential as obtained from the OPE model. Ppp and Qpp were computed

1In the case of the pp→ ppη′ reaction maximum possible energy of a proton seen from
another proton is equal to 0.8 MeV already at 1.3 MeV/c of the beam momentum above
threshold. Hence, below this energy Coulomb interaction is important in the proton-proton
final state interaction.
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92 Appendix C: Proton-proton final state interaction

from the pion-nucleon coupling constant and the pion mass according to formulas
from reference [142].

Equations C.1 and C.3 yields:

|Mpp→pp|2 =
1

C4 · p2 +

(
− 1

app
+
bpp · p2

2
− Ppp · p4

1 +Qpp · p2
− 2 · p · ηc · h(ηc)

)2 (C.4)

Figure C.1a shows the square of the proton proton scattaring amplitude as
obtained from equation C.4. Figure C.1b compares the distributions of the relative
momentum of the outgoing protons from the pp→ ppη′ reaction, calculated for a
beam momentum of 15 MeV/c above threshold, with and without the inclusion of
the proton-proton final state interaction. The calculation shows that the attractive
nuclear proton-proton interactions modifies the relative momentum spectrum such
that the enhancement at low relative momenta is observed in comparison to the
pure phase space distribution.

relative proton-proton momentum [MeV/c]      a)

2
a.

u.
M

pp
->

pp

relative proton-proton momentum [MeV/c]      b)

co
un

ts

Figure C.1: (a) Square of the proton-proton scattering amplitude as a function of the
centre-of-mass momentum. (b) Relative proton-proton momentum distribution for
the pp→ ppη′ reaction as given by the phase-space without proton-proton FSI - solid
line, and with proton-proton FSI - dotted line.

It is shown in appendix B in equation B.14 that the total cross section for the
pp→ ppη′ reaction can be expressed as:

σpp→ppη′ =

∫
dp dq p q2 δ

(
p−

√
mη′ + 2mp

4mη′
(q2

max − q2)

)
|Mpp→ppη′|2

8 (2π)3 (2mp +mη′)
√
m2

η′ + 4mpmη′ mpmη′
, (C.5)
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where, the Jacobi momenta p and q denote a momentum of either proton in the
proton-proton centre-of-mass, and the η′ momentum in the reaction centre-of-
mass, respectively. Mpp→ppη′ indicates the overall production amplitude, which
can be factorize according to the Watson-Migdal approximation as [140] 2:

|Mpp→ppη′| = |M0| · |Mpp→pp|, (C.6)

where, M0 accounts for all possible primary production processes and Mpp→pp

describes the elastic interaction of protons in the exit channel. Combining equa-
tions C.4, C.5 and C.6 one obtains:

σpp→ppη′ =

∫ dp dq p q2 δ

(
p−

√
mη′ + 2mp

4mη′
(q2

max − q2)

)
|M0|2

C4 · p2
+

(
−

1

app

+
bpp · p2

2
−

Ppp · p4

1 +Qpp · p2
−2 · p · ηc · h(ηc)

)2

8 (2π)3 (2mp +mη′)
√
m2

η′ + 4mpmη′ mpmη′
, (C.7)

which, after the integration over p under the assumption that |M0| is constant
gives:

σpp→ppη′ =

|M0|2 ·
∫ qmax

0

dq · p · q2

C4 · p2
+

(
−

1

app
+
bpp · p2

2
−

Ppp · p4

1 +Qpp · p2
−2 · p · ηc · h(ηc)

)2

8 (2π)3 (2mp +mη′)
√
m2

η′ + 4mpmη′ mpmη′
,

(C.8)

where, p =

√
mη′ + 2mp

4mη′
(q2

max − q2), and qmax =

√
4 ·Q ·mη′ ·mp

2 ·mp +mη′
, as shown in

appendix F, with Q denoting the centre-of-mass excess energy.

2“Watson has suggested a procedure to separate the energy dependence due to the final
state interaction between two collision partners from the reaction amplitude. In essence, the
procedure involves expressing the square of the matrix element as a term that varies slowly
with energy times the s-wave elastic-scattering of the two particles. The method is valid if the
relative momentum between the interacting particles is small, and the final state interaction is
strong compared with the primary reaction”[156].
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D. Dominant partial waves

The reaction pp→ ppη′ is defined by quantum numbers for the initial |pp>
and final |ppη′> states, with the following representation:

|p ; 2S+1LJ ; T> (D.1)

for the |pp> state where, p denotes the proton-proton relative momentum, L =
0, 1, . . . - the orbital angular momentum, S = 0, 1 - the spin, T = 1 - the isospin,
and J the total angular momentum1. Using the Jacobi coordinates system (see
appendix E) one may represent the |ppη′> state as:

|p ; q ; 2s+1lj ; λ ; T ; J ; M>, (D.2)

where, q denotes the η′ momentum relative to the pp system, λ - the angular
momentum of the η′ according to the proton pair, M - the projection of the
total spin J, and l, s and j describes the angular momentum, spin, and the total
angular momentum of the protons pair, respectively.

In practice, however, describing the pp→ ppη′ reaction one writes only non-
trivial parameters 2, and hence the transition between |pp> and |ppη′> states
reads:

2S+1LJ →2s+1 lj λ. (D.3)

For the measurements far above threshold, both the initial and final states will
be a superposition of many partial waves.

This work concerns the measurements of the pp→ ppη′ reaction at an excess
energy range from Q = 1.5 MeV to Q = 4.1 MeV . The excess energy Q =
4.1 MeV means that the η′ meson is always produced with the momentum
smaller than 3qmax(Q) = 72 MeV/c in the centre-of-mass system.

The range of the strong interaction causing the η′ production is of the limited
extent. It is certainly not longer than the one defined by the exchange of the
π0 meson, which is of the order of r0 = h̄

mπc
≈ 1.5 fm according to the Yukawa

1The Pauli principle requires that: (−1)L+S+T = −1.
2The “p”, in the initial channel, is skipped because one knows it from the known proton

beam momentum. Similarly “T” in the initial channel is 1 and it remains 1 after reactions. In
the measurement of the total cross section one is not interesting in the values of “p” and “q”
in the final state. And finally the total angular momentum “J” in the exit channel is skipped
because it must be equal to “J” before reaction.

3The maximum η′ momentum in the centre-of-mass system can be expressed as: (for the

derivation see appendix F) q2
max =

4 ·Q ·mη′ ·mp

2 ·mp + mη′
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parametrization 4. Thus, classically, the centre-of-mass angular momentum of the
produced η′, in the studied energy range (Q ≤ 4.1 MeV ), is smaller than 5:

r0 · qmax =
h̄

mπc
· qmax ≈ 0.5 h̄. (D.4)

Therefore, one can safely assume that the centre-of-mass angular momenta larger
than 0 h̄ will not play an important role in the η′ production, which proves that
only s-wave production should be significant for all energy point described in this
work. This implies that both l and λ from equation D.3 are equal to zero.

If the orbital angular momentum of the proton pair is l = 0 than the Pauli
excluding principle requires that s = 0 (the proton spins must be antiparallel)
and hence, j and also the total spin in the exit channel must be zero. Thus,
near threshold only 1S0s state will play an important role in the exit channel.
The parity of the |ppη′> system amounts to 6: Pppη′ = (−1)l+λ · Pη′ = −1.
The negative parity requires L from the initial channel to be odd (Ppp = (−1)L).
Hence, according to the Pauli principle, the spin S of the |pp> system must be
equal to 1. L = 1, 3, . . ., S = 1, and J = 0, which implies that L must be equal
to 1, since L and S should add to J .

Thus, for beam momenta, for which the assumption that l = 0 and λ = 0 is
justified, one concludes that the pp→ ppη′ reaction dominantly occurs through
the transition between the following partial waves:

3P0 →1S0 s. (D.5)

Therefore, for the measurements presented in this work (Q ≤ 4.1) it is enough
to consider only the above transition especially that the next exit state 1S0p is
forbidden.

4According to Yukawa parametrization the interaction potential defined by the pion exchange
can be described as follows: V (r) = g 1

r · e
− r

r0 , where r0 = h̄
mπc , and g stands for the coupling

constant [157].
5Gell-Mann and Watson [158] have argued that the orbital angular momenta of the meson,

in the centre-of-mass system, greater than l h̄ = p h̄
m c will not play an important role for the

pp → ppX reactions. Here “m” and “p” denote the mass and momentum of the produced
meson, respectively.

6The η′ meson has the following quantum numbers: IG(JPC) = 0+(0−+) [25].



E. Jacobi coordinates system

Let us consider three particles with masses m1, m2 and m3 placed in the
positions ~r1, ~r2 and ~r3 respectively. Usually it is more convenient to describe the
position of three particles by means of a Jacobi coordinates. Then one can use
the vector of the centre-of-mass ~RCM , the relative vector of particles 1 and 2 ~r,
and the vector between the third particle and the centre-of-mass of the first and
the second ones ~ρ. See figure below.

r
→

3

R
→

CM
r
→

2

r
→

1

ρ
→

r
→m3

m2

m1

Figure E.1: Definition of the Jacobi coordinates system

The transformation from Cartesian to Jacobi coordinates and vice versa are
given by the following matrices:




~RCM

~r

~ρ




=




m1

M

m2

M

m3

M

−1 1 0

m1

m1 +m2

m2

m1 +m2

−1







~r1

~r2

~r3




(E.1)




~r1

~r2

~r3




=




1 − m2

m1 +m2

m3

M

1
m1

m1 +m2

m3

M

1 0 −m1 +m2

M







~RCM

~r

~ρ




(E.2)
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where M = m1 +m2 +m3.
Now we shall calculate the canonically conjugated momenta ~P , ~p and ~q corre-

sponding to the Jacobi coordinates ~RCM , ~r and ~ρ respectively. According to the
definition they are given by:

~P = −i ∂

∂ ~RCM

, ~p = −i ∂
∂~r
, ~q = −i ∂

∂~ρ
. (E.3)

Thus,

~P = −i ∂~r1

∂ ~RCM

∂

∂~r1
− i ∂~r2

∂ ~RCM

∂

∂~r2
− i ∂~r3

∂ ~RCM

∂

∂~r3
= −i ∂

∂~r1
− i ∂

∂~r2
− i ∂

∂~r3
=

= ~p1 + ~p2 + ~p3, (E.4)

~p = −i∂~r1
∂~r

∂

∂~r1
− i∂~r2

∂~r

∂

∂~r2
− i∂~r3

∂~r

∂

∂~r3
= i

m2

m1 +m2

∂

∂~r1
− i m1

m1 +m2

∂

∂~r2

=
m1~p2 −m2~p1

m1 +m2

, (E.5)

~q = −i∂~r1
∂~ρ

∂

∂~r1
− i∂~r2

∂~ρ

∂

∂~r2
− i∂~r3

∂~ρ

∂

∂~r3
= −im3

M

∂

∂~r1
− im3

M

∂

∂~r2
+ i

m1 +m2

M

∂

∂~r3

=
m3

M
~p1 +

m3

M
~p2 −

m1 +m2

M
~p3 =

m3(~p1 + ~p2)− (m1 +m2)~p3

M
. (E.6)

The matrix transforming Cartesian to the Jacobi momenta, and the opposite one
are as follows:




~P

~p

~q




=




1 1 1

− m2

m1 +m2

m1

m1 +m2

0

m3

M

m3

M
−m1 +m2

M







~p1

~p2

~p3




(E.7)




~p1

~p2

~p3




=




m1

M
−1

m1

m1 +m2

m2

M
1

m2

m1 +m2

m3

M
0 −1







~P

~p

~q




(E.8)

Now it will be demonstrated that in the nonrelativistic approximation ~p = µ~̇r
and ~q = ν~̇ρ, where µ is the reduced mass of particles 1 and 2 and ν is the reduced
mass of particle 3 and the subsystem of particles 1 and 2.

~p =
m1~p2 −m2~p1

m1 +m2
=
m1m2~̇r2 −m2m1~̇r1

m1 +m2
=

m1m2

m1 +m2
(~̇r2 − ~̇r1) = µ~̇r (E.9)
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~q =
m3(~p1 + ~p2)− (m1 +m2)~p3

M
=
m3(~̇r1m1 + ~̇r2m2)− (m1 +m2)~̇r3m3

M
=

=
(m1 +m2)m3

~̇r1m1 + ~̇r2m2

m1 +m2
− (m1 +m2)~̇r3m3

M
=

=

m3(m1 +m2)

(
~̇r1m1 + ~̇r2m2

m1 +m2
− ~̇r3

)

M
=

=
(m1 +m2)m3

M
~̇ρ = ν~̇ρ (E.10)

In the nonrelativistic case ~q is equivalent to the momentum of particle 3 in the
centre-of-mass system and ~p is equal to the momentum of particle 2 in the centre-
of-mass of the subsystem of particles 1 and 2.

Let us now verify the last statement. The momentum of particle 3 in the
centre-of-mass system is equal to m3~v

∗
3, where ~v∗3 = ~v3 − ~VCM . Therefore:

~p∗3 = m3~̇r
∗
3 = m3~̇r3 −m3

~̇RCM = m3~̇r3 −m3
~̇r1m1 + ~̇r2m2 + ~̇r3m3

M
=

=
M~p3 −m3(~p1 + ~p2 + ~p3)

M
=

(m1 + m2)~p3 −m3(~p1 + ~p2)

M
= −~q (E.11)

Similarly, it will be shown that ~p is equivalent to the momentum of particle 2 in
the centre-of-mass of the subsystem of particles 1 and 2. A vector of the centre-

of-mass of the subsystem of particles 1 and 2 is equal to
m2~r2 +m1~r1
m1 +m2

. Thus the

momentum of particle 2 in the (2,1) centre-of-mass system can be expressed as:

m2

[
~̇r2 −

(
m2~̇r2 +m1~̇r1
m1 +m2

)]
=
m2m1(~̇r2 − ~̇r1)

m1 +m2

= µ~̇r = ~p (E.12)

The nice feature of the transformation from Cartesian to Jacobi coordinates
is that its Jacobian is equal to unity, as it is shown below:

|∂(~p1, ~p2, ~p3)

∂(~P , ~p, ~q)
| = |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂~p1

∂ ~P

∂~p1

∂~p

∂~p1

∂~q

∂~p2

∂ ~P

∂~p2

∂~p

∂~p2

∂~q

∂~p3

∂ ~P

∂~p3

∂~p

∂~p3

∂~q

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

| = |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

m1

M
−1

m1

m1 +m2

m2

M
1

m2

m1 +m2

m3

M
0 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

| =

= |m3

M

∣∣∣∣∣∣∣∣∣

−1
m1

m1 +m2

1
m2

m1 +m2

∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣

m1

M
−1

m2

M
1

∣∣∣∣∣∣∣∣
| =
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= |m3

M

(
− m2

m1 +m2
− m1

m1 +m2

)
− m1

M
− m2

M
| = | − m3

M
− m1

M
− m2

M
| = 1 (E.13)



F. Reaction kinematics

Let us consider pp→ ppη′ reaction with the following notation:
mp - proton mass,
mη′ - η′ meson mass,
Eb - total beam energy,
p
b

- beam momentum,

T - kinetic beam energy,
Q - excess energy ≡ kinetic energy available in the exit channel

in the centre-of-mass system,
s - Mandelstam variable ≡ square of the total four-momentum vector,
qmax - maximum η′ meson momentum in the centre-of-mass system,
pmax - maximum momentum of either proton in the proton-proton centre-

of-mass system.

Laboratory system:

Pb = (Eb, ~pb
) = (T +mp, ~p

b
) - beam four momentum vector

PT = (mp,~0 ) - target four momentum vector

s = (Pb + PT )2 = (Eb +mp, ~p
b
)2 = (Eb +mp)2 − p

b

2

Centre-of-mass system:

P ∗
b = (E∗

b, ~p
∗

b
)

P ∗
T = (E∗

T , ~p
∗
T

) = (E∗
b,−~p∗b )

s = (P ∗
b + P ∗

T )2 = (E∗
b + E∗

T )2 = (Q + 2mp +mη′)
2

s = 2mp(Eb +mp) Eb =
s

2mp
−mp

s = 2mp(T + 2mp) T =
s

2mp
− 2mp

s = 2mp(
√
m2

p + ~p
b

2 +mp) p
b

=

√√√√
(

s

2mp
−mp

)2

−m2
p

s = (Q+ 2mp +mη′)
2 Q =

√
s− 2mp −mη′

Values at threshold:

sthreshold = (2mp +mη′)
2

Tthreshold =
mη′

2

2mp
+ 2mη′ , p

b−threshold
=

√√√√
(
mp + 2mη′ +

mη′
2

2mp

)2

−m2
p
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q
→

max -q
→

maxmη′

2mp

Figure F.1: The produced meson has a maximum momentum if both protons are
emitted with the same momentum vector.

According to Figure F.1 s can be expressed as follows:

s = (E∗
η′ + E∗

2p)2 =
(√

q2
max +mη′

2 +
√
q2

max + 4 ·m2
p

)2

, and solving for qmax

one obtains:

qmax =
1

2

√√√√
(
s− 4 ·m2

p −m2
η′
)2 − 16 ·m2

p ·m2
η′

s

The nonrelativistic approximation gives:

s =

(
q2

max

2 ·mη′
+

q2
max

4 ·mp

+ 2 ·mp +mη′

)2

, and

qmax =

√√√√(
√
s− 2 ·mp −mη′) · 4 ·mη′ ·mp

2 ·mp +mη′
=

√
4 ·Q ·mη′ ·mp

2 ·mp +mη′
(F.1)

If the produced η′ meson is in the rest in the reaction centre-of-mass system
then the outgoing protons have a maximum relative momentum, and their centre-
of-mass system is identical with the reaction centre-of-mass. In this case the
kinetic energy of each proton is equal to the half of the excess energy Q and hence,
the maximum proton momentum in the proton-proton centre-of-mass system can

be expressed as: pmax =

√

(
Q

2
+mp)2 −m2

p.

It can be shown that the following approximation:

pabove
b ≈ Eabove

b ≈ 3 ·Q (F.2)

is valid for the pp→ ppη′ reaction close to threshold, where pabove
b and Eabove

b

indicate the beam momentum and energy above threshold, respectively.

In the remaining part the second approximation will be proved:



Q =
√
s− 2 ·mp −mη′

=
√

2 ·mp · (Eb +mp)− 2 ·mp −mη′

=
√

2 ·mp · (Eb−threshold + Eabove
b +mp)− 2 ·mp −mη′

=

√√√√2 ·mp · (
m2

η′

2 ·mp

+ 2 ·mη′ +mp + Eabove
b +mp)− 2 ·mp −mη′

=
√
m2

η′ + 4 ·m2
p + 4 ·mp ·mη′ + Eabove

b · 2 ·mp − 2 ·mp −mη′

= (mη′ + 2 ·mp) ·
√√√√1 +

Eabove
b · 2 ·mp

(mη′ + 2 ·mp)2
− 2 ·mp −mη′

≈ (mη′ + 2 ·mp) · (1 +
1

2
· E

above
b · 2 ·mp

(mη′ + 2 ·mp)2
+ . . .)− 2 ·mp −mη′

= mη′ + 2 ·mp +
Eabove

b ·mp

mη′ + 2 ·mp
− 2 ·mp −mη′

≈ 1

3
· Eabove

b
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114 References

[138] A.M. Bergdolt et al. Phys. Rev. D 48 (1993), R2969

[139] COSY-11 Collaboration, Annual Report, IKP, FZ Jülich 1995 p. 39

[140] K.M. Watson, Phys. Rev. 88 (1952), 1163

[141] A. Moalem, L. Razdolskaja, E. Gedalin, BGU-94/04, hep-ph/9505264

[142] J.P. Naisse, Nucl. Phys. A 278 (1977), 506

[143] C. Wilkin, Phys. Rev. C 47 (1993), R938

[144] J.-F. Germond, C. Wilkin, Nucl. Phys. A 518 (1990), 308
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