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Chodrow plot and the interaction of K^K 
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Institute of Physics, Jagiellonian University, PL-30-059 Cracow, Poland 

Abstract. Measurements of the pp -^ ppK^K^ reaction, performed with the experiment COSY-11 
at the Cooler Synchrotron COSY, reveal a significant discrepancy between obtained excitation func­
tion and theoretical expectations neglecting interactions of kaons. Thus, the observed enhancement 
of the data above the predictions may be plausibly assigned to the influence oiK^K^ or Kp inter­
action. This may manifest itself even stronger in the distributions of the differential cross-sections. 
Therefore, in order to deepen our knowledge about the low energy dynamics of the ppKK system 
we investigate population of events for the pp -^ ppK^K^ reaction as a function of the invari­
ant masses of two particle subsystems. In particular generalizations of the Dalitz plot for the four 
particles proposed by Chodrow and Goldhaber will be presented. 
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INTRODUCTION 

The strength of the kaon-antikaon and kaon-nucleon interaction is a crucial quantity for 
many physics topics. It is for example, an important parameter in the ongoing discus­
sion on the nature ofjhe scalar resonaces ao(980) and /o(980), in particular for their 
interpretation as a KK molecules [1, 2, 3]. It is also important in view of discussions 
on the structure of the excited hyperon A(I405), which is considered as a candidate 
for a possible KN bound state [4]. Furthermore, good understanding of kaon and an-
tikaon interaction with nucleon is essential in many calculations connected with neutron 
stars [5, 6]. 
Because kaon targets are still unavailable, the only realistic way to study KK inter­
action is the near threshold kaon pair production in multi particle exit channels like 
PP -^ ppK+K^. Measurements of the total cross section of the aforementioned reaction 
were performed near the kinematical threshold [7, 8, 9] by the COSY-II collabora­
tion [10] at the cooler synchrotron COSY, and for higher energy at g = 114 MeV the 
experiment was conducted by the DISTO collaboration [11] at the SATURN accelerator 
The results are shown in Fig. 1, which contains also theoretical expectations normal­
ized in amplitude to the experimental point at the excess energy of g = 114 MeV. One 
observes that near threshold data points lie significantly above any expectations. Pre­
dictions based on the assumption of homogeneous phase space occupation differs from 
experimental data by two orders of magnitude at g = 10 MeV (dashed line in Fig. 1). It is 
also evident that the inclusion of the pp-FSl (dashed-dotted line) or calculations within 
a one-boson exchange model [12] (solid line) cannot fully account for the discrepancy. 
The enhancement may be due to the influence of K^K^ or Kp interaction which was 
neglected in the calculations. This interaction should manifest itself also in the distribu­
tions of the differential cross-sections [13]. Indeed, the comparison of the invariant mass 
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FIGURE 1. Total cross section as a function of the exess energy Q for the reaction pp -^ ppK^K^ 
The data are form references [7, 8, 11, 14] and the meaning of lines is described in the text. 

spectra for the K+p and K^p indicates that the K^p interaction is much stronger that 
the one between ^ + and the proton [8]. As a next step we would like to continue the 
investigations by extending the analysis into two dimensional distributions. 
A possible way to study the interaction is to compare distributions constructed from 
experimental data to the results of Monte Carlo simulations generated with various pa­
rameters of the K+K^ and Kp interaction. In our investigation we use experimental 
data obtained from two COSY-11 measurements at excess energies of g = 10 MeV (27 
events) and 28 MeV (30 events) [8]. At present we are, however, at the early stage of 
the analysis and in this report we will present still preliminary spectra which we intend 
to use for the evaluation of discussed interactions in the near future. A significant effect 
observed for the excitation function for the pp -^ ppK+K^ reaction encourages us to 
take the effort to carry out the analysis in spite of the fact that the available statistics is 
quite low. 

DALITZ PLOT - CONVENIENT METHOD OF ANALYSIS FOR 
THREE-PARTICLE FINAL STATES 

For three particles in the final state the process of analysing elementary-particle-reaction 
data by plotting them in the space of two internal parameters is well known. It was 
originated by Dalitz in a nonrelativistic application. In the original paper [15] Dalitz 
let the distances to the sides of an equilateral triangle be the energies of the three 
particles in the centre-of-mass frame. The sum of distances from a point within the 
triangle to its sides is constant and equal to the height, which represents the total energy. 
Therefore, the interior points fulfil four-momentum conservation and represent energy 
partitions. The relativistic extension of Dalitz's analysis was given by Fabri [16]. More 
instructive coordinates than energies are the squared invariant masses of the two-body 
subsystems [17]. Using such coordinates we obtain event distribution bounded by well 
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defined smooth closed curve [18]. The area of the Dalitz Plot is proportional to the 
phase space volume. Moreover, in case of no dynamics and the absence of any final 
state interaction, the occupation of the Dalitz plot would be fully homogeneous because 
the creation in any phase space interval would be equally probable. Thus, final state 
interaction shows up as a modification of the event density on Dalitz plot. Such effect 
was observed experimentally e.g. by the COSY-11 collaboration for the pp -^ ppr\ 
reaction [19]. 

GENERALIZATION OF THE DALITZ PLOT FOR 
FOUR-PARTICLE FINAL STATES 

In case of a four body in final state the analysis is more complex, because one need 
five variables to fully describe a relative movement of particles. Nevertheless, there are 
many different types of generalization of the Dalitz plot for four-particle final states, 
which make possible to study interaction between particles in the exit charmel. In this 
contribution we present two convenient generalizations proposed by Chodrow [20] and 
Goldhaber [21, 22], which we use for studing of the K+K^ or Kp interaction. However, 
there exist many other approaches as described e.g. by Nyborg [18]. 

Chodrow Plot. Consider four particles with masses nit and total energy E in centre-
of-mass frame. The probability of a reaction yielding a state with /th particle in momen­
tum range (fipi is: 

d^^P = d^pid^p2d^p3d^p4—-^——5^ IHPASIYEJ-E] |M|2 (1) 

where Ei = JpJ + mj is an energy of the /th particle (c= I) and M denotes the invariant 
matrix element for the process. In his work [20] Chodrow assumed, thatM depends only 
on energies of the particles. The probability expressed in eq.(I) is then given by: 

d^P = dEidE2dE3 \M\^mm{\pi\, \p2\). (2) 

It is then possible to analyse the resonanses by plotting event distribution in iii£'2-plane. 
However the analysis won't be easy due to the factor min {\pi\,\p2\) [20]. This difficulty 
can be avoided if in final state particle I and 2 are identical. This condition is fulfilled 
in the case of the ppK^K^ system. In this case analysis can be confined to region of 
i?ii?2-plane defined by condition Ei <E2. Then from eq.(2) one gets: 

d^P = 32n^ \M\^ dFidE2dE3, (3) 

7^ _vr,'2^I7. TV i i c ;mr^1;oc• tViot C'. — i C'. . / C'Z _ ^ 2 _ ^ 2 ^ ^ ^ J , - 1 / i ? ! where dFi = JEf— m\dE\. This implies that F\ = ^ E\ \/Ef — mf— mfcosh ^ 
The distribution of events can then be plotted in the F[£'2-plane, and resonances may be 
directly read off the plot. Like in case of three particle final states the physically allowed 
region on Chodrow plot is bounded by well defined curve, but the event density is not 
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FIGURE 2. Monte Carlo simulations of the pp -^ ppK+K" reaction at g = 28 MeV: 
(left) Chodrow plot for the homogeneously populated phase space; (right) Phase space density distribution 
modified by proton-proton final state interaction. 

homogeneous and the area of the plot is not proportional to the phase space volume. 
Examples of the Chodrow plots are shown in Fig. 2. 

Goldhaber Plot. According to Nyborg several others extensions of Dalitz plot can 
be obtained if one assumes, that the matrix element M depends only on invariant 
masses of two- and three particle subsystems [18]. Eq.(l) can be now integrated over 
spatial orientations of the four particle system, and expressed as a distribution in some 
choice of five independent invariant masses. A very convenient set of variables is: 

A A fl-Mfo, Mt, Mfy,, MfoA, Mf,.. The resuh is ' 1 2 ' ^ '^34' ^ '^14' ^'^124' 
a 
134-

d^P = ^ |Mp 
8 £ 2 l I 

dMfj dM^^ dMf^ dMfji dMf^^ (4) 

where 5 is a function of above-mentioned invariant masses, which exact form can be 
found in Nyborg's work [18]. Let suppose that M depends at most on M^j, M^^, and 
Mj24, which correspond to situation were only two two-particle or one three-particle 
resonances are present [18]. Eq.(4)canbe now integrated overM^4, Mf^^, and the result 
gives the distribution of events: 

d^P-
n' 

' iE^Ml^ M^giMl^A.ml) dMl^dMl^dMl 
12 

^124' (5) 

where g (M^J ,m\,m ,2 ^ 2 \ 
MI2- • [m\ +m2y MI2- • ( / W 1 - / W 2 ) ' The projection of 

the physical region on the (M12, M34) -plane gives a right isosceles triangle within which 
the area is not proportional to the phase space volume (Fig. 3). Analysis of the event 
distribution on the (M12, M34)-plane was performed for the first time by Goldhaber 
in 1962 [21, 22]. It is worth mentioning that the event density on Goldhaber plot is 
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FIGURE 3. Monte Carlo simulations of the pp -^ ppK+K^ reaction at g = 28 MeV: 
(left) Goldhaber plot for a homogeneously populated phase space; (right) Phase space density distribution 
modified by proton-proton final state interaction. 

not homogeneous and goes to zero on entire boundary of the plot given by following 
equations: M12+M34 = E, Mu =mi +/W2, M34 = m^+m4 [18]. 

PRESENT STATUS OF ANALYSIS 

So far we conducted Monte Carlo simulations of the pp -^ ppK+K^ reaction using a 
FORTRAN-based code, called GENBOD [23]. It generates four-momentum vectors of 
the outgoing particles in the centre of mass frame with the homegeneous distribution in 
the phase space. The total centre of mass energy as well as the number and masses of 
the particles are specified by the user The simulations were first made assuming that 
there is no final state interaction, then the pp-FSl was included [24]. The pp-¥Sl was 
taken into account as a weights proportional to the inverse of a squared Jost-function 
of the Borm potential [25]. The simulated distributions for the Chodrow and Goldhaber 
plots are shown in Fig. 2 and 3. In order to compare these spectra with the experimental 
distributions we need to correct them for the acceptance and detection efficiency of 
the COSY-II facility. This will be a next step of the investigations which we intend to 
perform in the near future. An example of the experimental event distribution on the 
Goldhaber plot is shown in Fig. 4. Even though the statistics is low one recognises 
cleary that the density distribution is different from results of simulations shown in 
Fig. 3. However, at present, before the acceptance corrections, any interpretation would 
be prematured. 
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FIGURE 4. Goldhaber Plots obtained from measurements [8] at g = 10 MeV (left) and 
Q = 28 MeV (right). Solid lines show boundaries of the physically allowed region at appropriate excess 
energies. 
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